Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Basic Microbiol ; : e2400129, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38922954

RESUMEN

Nanobiotechnology has gained significant attention due to its capacity to generate substantial benefits through the integration of microbial biotechnology and nanotechnology. Among microbial organisms, Actinomycetes, particularly the prominent genus Streptomycetes, have garnered attention for their prolific production of antibiotics. Streptomycetes have emerged as pivotal contributors to the discovery of a substantial number of antibiotics and play a dominant role in combating infectious diseases on a global scale. Despite the noteworthy progress achieved through the development and utilization of antibiotics to combat infectious pathogens, the prevalence of infectious diseases remains a prominent cause of mortality worldwide, particularly among the elderly and children. The emergence of antibiotic resistance among pathogens has diminished the efficacy of antibiotics in recent decades. Nevertheless, Streptomycetes continue to demonstrate their potential by producing bioactive metabolites for the synthesis of nanoparticles. Streptomycetes are instrumental in producing nanoparticles with diverse bioactive characteristics, including antiviral, antibacterial, antifungal, antioxidant, and antitumor properties. Biologically synthesized nanoparticles have exhibited a meaningful reduction in the impact of antibiotic resistance, providing resources for the development of new and effective drugs. This review succinctly outlines the significant applications of Streptomycetes as a crucial element in nanoparticle synthesis, showcasing their potential for diverse and enhanced beneficial applications.

2.
Curr Microbiol ; 78(8): 3192-3200, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34213617

RESUMEN

Xanthomonas oryzae pv. oryzae (X. oryzae) is a bacterial pathovar of rice diseases all over the world. Owing to emerging antibacterial resistance, phage therapies have gained significant attention to treat various bacterial infections. Nevertheless, comprehensive research is needed for their use as a safe biocontrol agent. In this study, isolation and characterization of a novel phage Xoo-sp15, that infects X. oryzae was ascertained through experimental and bioinformatics analyses to determine its virulent potency and reliability. High throughput sequencing demonstrated that Xoo-sp15 has a dsDNA genome with a total size of 157,091 bp and 39.9% GC content lower than its host (63.6%). Morphological and phylogenetic analyses characterized it as a new member of the Bastille-like group within the family Herelleviridae. In silico analysis revealed that it contains 229 open reading frames and 16 tRNAs. Additionally, this novel phage does not contain any resistant determinants and can infect nine X. oryzae strains. Therefore, Xoo-sp15 has the potential to serve as a novel candidate for phage therapy.


Asunto(s)
Bacteriófagos , Oryza , Xanthomonas , Bacteriófagos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Oryza/genética , Filogenia , Enfermedades de las Plantas , Reproducibilidad de los Resultados , Xanthomonas/genética
3.
Microbiol Resour Announc ; 11(9): e0072522, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35972253

RESUMEN

We present the genome sequence of Streptomyces sp. strain R1, isolated from water canal sediments and possessing genes responsible for antimicrobial metabolites and plant growth promotion. The genome assembly contains 7,936,694 bp with 72.24% of guanine-cytosine content. This genome will provide basic knowledge of the genes and pathways involved in the above mechanisms.

4.
Antibiotics (Basel) ; 11(8)2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36009926

RESUMEN

Actinomycetes, most notably the genus Streptomyces, have great importance due to their role in the discovery of new natural products, especially for finding antimicrobial secondary metabolites that are useful in the medicinal science and biotechnology industries. In the current study, a genome-based evaluation of Streptomyces sp. isolate BR123 was analyzed to determine its biosynthetic potential, based on its in vitro antimicrobial activity against a broad range of microbial pathogens, including gram-positive and gram-negative bacteria and fungi. A draft genome sequence of 8.15 Mb of Streptomyces sp. isolate BR123 was attained, containing a GC content of 72.63% and 8103 protein coding genes. Many antimicrobial, antiparasitic, and anticancerous compounds were detected by the presence of multiple biosynthetic gene clusters, which was predicted by in silico analysis. A novel metabolite with a molecular mass of 1271.7773 in positive ion mode was detected through a high-performance liquid chromatography linked with mass spectrometry (HPLC-MS) analysis. In addition, another compound, meridamycin, was also identified through a HPLC-MS analysis. The current study reveals the biosynthetic potential of Streptomyces sp. isolate BR123, with respect to the synthesis of bioactive secondary metabolites through genomic and spectrometric analysis. Moreover, the comparative genome study compared the isolate BR123 with other Streptomyces strains, which may expand the knowledge concerning the mechanism involved in novel antimicrobial metabolite synthesis.

5.
Folia Microbiol (Praha) ; 66(4): 639-649, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33950512

RESUMEN

Streptomyces have been reported as a remarkable source for bioactive secondary metabolites with complex structural and functional diversity. In this study, 35 isolates of genus Streptomyces were purified from rhizospheric and marine soils collected from previously unexplored habitats and screened for antimicrobial activities. One of these isolates, G1, when tested in vitro, was found highly active against wide range of microbes including Gram-positive, Gram-negative bacteria, and different fungal pathogens. It was identified as mesophilic, alkaliphilic, and moderately halotolerant as it showed optimum growth at temperature 30 °C, pH 8.0 in casein-starch-peptone-yeast extract-malt extract medium supplemented with 5% NaCl. Sequence analysis of the 16S rRNA gene indicated 100% identity of this isolate to Streptomyces fimbriatus. Moreover, maximum antimicrobial activity was achieved in starch nitrate medium supplemented with 1% glycerol as carbon and 0.03% soy meal as nitrogen source. The antimicrobial compounds produced by this isolate were extracted in methanol. Bioassay-guided fractionation through thin layer chromatography of methanolic extract resulted in the separation of a most active fraction with an Rf value of 0.46. This active fraction was characterized by FTIR and LCMS analysis and found similar to streptothricin D like antibiotic with m/z 758.42.


Asunto(s)
Sedimentos Geológicos , Estreptotricinas , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Sedimentos Geológicos/microbiología , ARN Ribosómico 16S/genética , Streptomyces/química , Estreptotricinas/química , Estreptotricinas/aislamiento & purificación , Estreptotricinas/metabolismo , Estreptotricinas/farmacología
6.
Microbiol Resour Announc ; 9(41)2020 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33033135

RESUMEN

The genome of Streptomyces sp. strain BR123, isolated from rhizospheric soil that exhibited promising antimicrobial properties, was sequenced and assembled. Here, we report an 8,157,040-bp genome sequence with a G+C content of 72.63%. This genome sequence enlightens the genes responsible for the production of secondary metabolites and antimicrobial compounds by this strain.

7.
Microbiol Resour Announc ; 9(48)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33239465

RESUMEN

A jumbo bacteriophage, Xoo-sp14, infecting Xanthomonas oryzae pv. oryzae was isolated from rice fields in China. Here, we report the complete genome sequence of this phage, revealing that it had a linear double-stranded DNA (dsDNA) molecule 232,104 bp long, with a G+C content of 58%. It has 251 annotated protein-coding sequences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA