Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Appl Physiol (1985) ; 136(4): 949-953, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38420678

RESUMEN

Decompression sickness (DCS) is caused by gaseous nitrogen dissolved in tissues forming bubbles during decompression. To date, no method exists to identify nitrogen within tissues, but with advances in positron-emission tomography (PET) technology, it may be possible to track gaseous radionuclides into tissues. We aimed to develop a method to track nitrogen movement in vivo and under hyperbaric pressure that could then be used to further our understanding of DCS using nitrogen-13 (13N2). A single anesthetized female Sprague-Dawley rat was exposed to 625 kPa, composed of air, isoflurane, and 13N2 for 10 min. The PET scanner recorded 13N2 during the hyperbaric exposure with energy windows of 250-750 keV. The PET showed an increase in 13N2 concentration in the lung, heart, and abdominal regions, which all reached a plateau after ∼4 min. This showed that it is possible to gain noninvasive in vivo measurements of nitrogen kinetics through the body while at hyperbaric pressures. Tissue samples showed radioactivity above background levels in the blood, brain, liver, femur, and thigh muscle when assessed using a γ counter. The method can be used to evaluate an array of challenges to our understanding of decompression physiology by quantifying nitrogen load through γ counts of 13N2, and signal intensity of the PET. Further development of the method will improve the specificity of the measured outcomes, and enable it to be used with larger mammals, including humans.NEW & NOTEWORTHY This article describes a method for the in vivo quantification and tracking of nitrogen through the mammalian body whilst exposed to hyperbaric pressure. The method has the potential to further our understanding of decompression sickness, and quantitatively evaluate the effectiveness of both the treatment and prevention of decompression sickness.


Asunto(s)
Enfermedad de Descompresión , Buceo , Oxigenoterapia Hiperbárica , Radioisótopos de Nitrógeno , Humanos , Ratas , Animales , Femenino , Nitrógeno , Enfermedad de Descompresión/diagnóstico por imagen , Buceo/fisiología , Ratas Sprague-Dawley , Descompresión/efectos adversos , Gases , Oxigenoterapia Hiperbárica/métodos , Tomografía de Emisión de Positrones , Mamíferos
2.
Diving Hyperb Med ; 49(4): 298-303, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31828749

RESUMEN

INTRODUCTION: Scrubbers in closed-circuit rebreather systems remove carbon dioxide (CO2) from the exhaled gas. In an attempt to be more user-friendly and efficient, the ExtendAir® non-granular, pre-formed scrubber cartridge has been developed. The cartridge manufacturer claims twice the absorptive capacity of granular CO2 absorbent, with less variability, lower work of breathing, and reduced exposure to caustic chemicals after a flood. To our knowledge there are no published data that support these claims. METHODS: Cartridge (ExtendAir®) and granular (Sofnolime® 797) scrubbers of equal volume and mass were tested five times in an immersed and mechanically ventilated O2ptima rebreather. Exercise protocols involving staged (90 minutes 6 MET, followed by 2 MET) and continuous (6 MET) activity were simulated. We compared: duration until breakthrough, and variability in duration, to endpoints of 1.0 kPa and 0.5 kPa inspired partial pressure of CO2; inspiratory-expiratory pressure difference in the breathing loop; and pH of eluted water after a 5 minute flood. RESULTS: Mean difference in scrubber endurance was 0-20% in favour of the ExtendAir® cartridge, depending on exercise protocol and chosen CO2 endpoint. There were no meaningful differences in endpoint variability, inspiratory-expiratory pressure in the loop, or pH in the eluted water after a flood. CONCLUSIONS: Cartridge and granular scrubbers were very similar in duration, variability, ventilation pressures, and causticity after a flood. Our findings were not consistent with claims of substantial superiority for the ExtendAir® cartridge.


Asunto(s)
Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Buceo , Humanos , Presión Parcial , Respiración , Dispositivos de Protección Respiratoria , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA