Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Lett ; 44(7): 813-822, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35650455

RESUMEN

OBJECTIVES: Hydrodynamics, mixing and shear are terms often used when explaining or modelling scale differences, but other scale differences, such as evaporation, can arise from non-hydrodynamic factors that can be managed with some awareness and effort. RESULTS: We present an engineering approach to the prediction of evaporation rates in bioreactors based on gH2O/Nm3 of air entering and leaving the bioreactor and confirm its usefulness in a 28-run design of experiments investigating the effects of aeration rate (0.02 to 2.0 VVM), condenser temperature (10 to 20 °C), fill (2.5 to 5 kg), broth temperature (25 to 40 °C) and agitator speed (25 to 800 rpm). Aeration rate and condenser temperature used in the engineering prediction provided a practically useful estimate of evaporation; the other factors, while statistically identified as having some influence, were of negligible practical usefulness. Evaporation rates were never found to be zero, and could be at least 10% different to those expected at scale. CONCLUSIONS: An assessment of evaporation rates for any project is encouraged, and it is recommended that the effects are accounted for by measurements, modelling or by tuning the exhaust cooling device temperature to minimize scale differences.


Asunto(s)
Reactores Biológicos , Temperatura
2.
Metab Eng ; 24: 129-38, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24853352

RESUMEN

The production of recombinant proteins is frequently enhanced at the levels of transcription, codon usage, protein folding and secretion. Overproduction of heterologous proteins, however, also directly affects the primary metabolism of the producing cells. By incorporation of the production of a heterologous protein into a genome scale metabolic model of the yeast Pichia pastoris, the effects of overproduction were simulated and gene targets for deletion or overexpression for enhanced productivity were predicted. Overexpression targets were localized in the pentose phosphate pathway and the TCA cycle, while knockout targets were found in several branch points of glycolysis. Five out of 9 tested targets led to an enhanced production of cytosolic human superoxide dismutase (hSOD). Expression of bacterial ß-glucuronidase could be enhanced as well by most of the same genetic modifications. Beneficial mutations were mainly related to reduction of the NADP/H pool and the deletion of fermentative pathways. Overexpression of the hSOD gene itself had a strong impact on intracellular fluxes, most of which changed in the same direction as predicted by the model. In vivo fluxes changed in the same direction as predicted to improve hSOD production. Genome scale metabolic modeling is shown to predict overexpression and deletion mutants which enhance recombinant protein production with high accuracy.


Asunto(s)
Ingeniería Metabólica , Metaboloma/genética , Modelos Biológicos , Pichia , Ciclo del Ácido Cítrico/genética , Expresión Génica , Glucólisis/genética , Humanos , NAD/genética , NAD/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
3.
Microb Cell Fact ; 12: 87, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24083827

RESUMEN

BACKGROUND: Production of bioethanol from lignocellulosic biomass requires the development of robust microorganisms that can tolerate the stressful conditions prevailing in lignocellulosic hydrolysates. Several inhibitors are known to affect the redox metabolism of cells. In this study, Saccharomyces cerevisiae was engineered for increased robustness by modulating the redox state through overexpression of GSH1, CYS3 and GLR1, three genes involved in glutathione (GSH) metabolism. RESULTS: Overexpression constructs were stably integrated into the genome of the host strains yielding five strains overexpressing GSH1, GSH1/CYS3, GLR1, GSH1/GLR1 and GSH1/CYS3/GLR1. Overexpression of GSH1 resulted in a 42% increase in the total intracellular glutathione levels compared to the wild type. Overexpression of GSH1/CYS3, GSH1/GLR1 and GSH1/CYS3/GLR1 all resulted in equal or less intracellular glutathione concentrations than overexpression of only GSH1, although higher than the wild type. GLR1 overexpression resulted in similar total glutathione levels as the wild type. Surprisingly, all recombinant strains had a lower [reduced glutathione]:[oxidized glutathione] ratio (ranging from 32-67) than the wild type strain (88), suggesting a more oxidized intracellular environment in the engineered strains. When considering the glutathione half-cell redox potential (E(hc)), the difference between the strains was less pronounced. E(hc) for the recombinant strains ranged from -225 to -216 mV, whereas for the wild type it was estimated to -225 mV. To test whether the recombinant strains were more robust in industrially relevant conditions, they were evaluated in simultaneous saccharification and fermentation (SSF) of pretreated spruce. All strains carrying the GSH1 overexpression construct performed better than the wild type in terms of ethanol yield and conversion of furfural and HMF. The strain overexpressing GSH1/GLR1 produced 14.0 g L(-1) ethanol in 48 hours corresponding to an ethanol yield on hexoses of 0.17 g g(-1); while the wild type produced 8.2 g L(-1) ethanol in 48 hours resulting in an ethanol yield on hexoses of 0.10 g g(-1). CONCLUSIONS: In this study, we showed that engineering of the redox state by modulating the levels of intracellular glutathione results in increased robustness of S. cerevisiae in SSF of pretreated spruce.


Asunto(s)
Glutatión/metabolismo , Lignina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Glutatión/biosíntesis , Lignina/genética , Oxidación-Reducción , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Ingeniería de Tejidos
4.
AMB Express ; 4: 56, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25147754

RESUMEN

Development of robust yeast strains that can efficiently ferment lignocellulose-based feedstocks is one of the requirements for achieving economically feasible bioethanol production processes. With this goal, several genes have been identified as promising candidates to confer improved tolerance to S. cerevisiae. In most of the cases, however, the evaluation of the genetic modification was performed only in laboratory strains, that is, in strains that are known to be quite sensitive to various types of stresses. In the present study, we evaluated the effects of overexpressing genes encoding the transcription factor (YAP1) and the mitochondrial NADH-cytochrome b5 reductase (MCR1), either alone or in combination, in an already robust and xylose-consuming industrial strain of S. cerevisiae and evaluated the effect during the fermentation of undiluted and undetoxified spruce hydrolysate. Overexpression of either gene resulted in faster hexose catabolism, but no cumulative effect was observed with the simultaneous overexpression. The improved phenotype of MCR1 overexpression appeared to be related, at least in part, to a faster furaldehyde reduction capacity, indicating that this reductase may have a wider substrate range than previously reported. Unexpectedly a decreased xylose fermentation rate was also observed in YAP1 overexpressing strains and possible reasons behind this phenotype are discussed.

5.
Biotechnol Biofuels ; 6(1): 181, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24341320

RESUMEN

BACKGROUND: Pretreatment of lignocellulosic biomass generates a number of undesired degradation products that can inhibit microbial metabolism. Two of these compounds, the furan aldehydes 5-hydroxymethylfurfural (HMF) and 2-furaldehyde (furfural), have been shown to be an impediment for viable ethanol production. In the present study, HMF and furfural were pulse-added during either the glucose or the xylose consumption phase in order to dissect the effects of these inhibitors on energy state, redox metabolism, and gene expression of xylose-consuming Saccharomyces cerevisiae. RESULTS: Pulsed addition of 3.9 g L-1 HMF and 1.2 g L-1 furfural during either the glucose or the xylose consumption phase resulted in distinct physiological responses. Addition of furan aldehydes in the glucose consumption phase was followed by a decrease in the specific growth rate and the glycerol yield, whereas the acetate yield increased 7.3-fold, suggesting that NAD(P)H for furan aldehyde conversion was generated by acetate synthesis. No change in the intracellular levels of NAD(P)H was observed 1 hour after pulsing, whereas the intracellular concentration of ATP increased by 58%. An investigation of the response at transcriptional level revealed changes known to be correlated with perturbations in the specific growth rate, such as protein and nucleotide biosynthesis. Addition of furan aldehydes during the xylose consumption phase brought about an increase in the glycerol and acetate yields, whereas the xylitol yield was severely reduced. The intracellular concentrations of NADH and NADPH decreased by 58 and 85%, respectively, hence suggesting that HMF and furfural drained the cells of reducing power. The intracellular concentration of ATP was reduced by 42% 1 hour after pulsing of inhibitors, suggesting that energy-requiring repair or maintenance processes were activated. Transcriptome profiling showed that NADPH-requiring processes such as amino acid biosynthesis and sulfate and nitrogen assimilation were induced 1 hour after pulsing. CONCLUSIONS: The redox and energy metabolism were found to be more severely affected after pulsing of furan aldehydes during the xylose consumption phase than during glucose consumption. Conceivably, this discrepancy resulted from the low xylose utilization rate, hence suggesting that xylose metabolism is a feasible target for metabolic engineering of more robust xylose-utilizing yeast strains.

6.
Biotechnol Biofuels ; 6(1): 22, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23409974

RESUMEN

BACKGROUND: Pretreatment of biomass for lignocellulosic ethanol production generates compounds that can inhibit microbial metabolism. The furan aldehydes hydroxymethylfurfural (HMF) and furfural have received increasing attention recently. In the present study, the effects of HMF and furfural on redox metabolism, energy metabolism and gene expression were investigated in anaerobic chemostats where the inhibitors were added to the feed-medium. RESULTS: By cultivating the xylose-utilizing Saccharomyces cerevisiae strain VTT C-10883 in the presence of HMF and furfural, it was found that the intracellular concentrations of the redox co-factors and the catabolic and anabolic reduction charges were significantly lower in the presence of furan aldehydes than in cultivations without inhibitors. The catabolic reduction charge decreased from 0.13(±0.005) to 0.08(±0.002) and the anabolic reduction charge decreased from 0.46(±0.11) to 0.27(±0.02) when HMF and furfural were present. The intracellular ATP concentration was lower when inhibitors were added, but resulted only in a modest decrease in the energy charge from 0.87(±0.002) to 0.85(±0.004) compared to the control. Transcriptome profiling followed by MIPS functional enrichment analysis of up-regulated genes revealed that the functional group "Cell rescue, defense and virulence" was over-represented when inhibitors were present compared to control cultivations. Among these, the ATP-binding efflux pumps PDR5 and YOR1 were identified as important for inhibitor efflux and possibly a reason for the lower intracellular ATP concentration in stressed cells. It was also found that genes involved in pseudohyphal growth were among the most up-regulated when inhibitors were present in the feed-medium suggesting nitrogen starvation. Genes involved in amino acid metabolism, glyoxylate cycle, electron transport and amino acid transport were enriched in the down-regulated gene set in response to HMF and furfural. It was hypothesized that the HMF and furfural-induced NADPH drainage could influence ammonia assimilation and thereby give rise to the nitrogen starvation response in the form of pseudohyphal growth and down-regulation of amino acid synthesis. CONCLUSIONS: The redox metabolism was severely affected by HMF and furfural while the effects on energy metabolism were less evident, suggesting that engineering of the redox system represents a possible strategy to develop more robust strains for bioethanol production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA