Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 19(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34677475

RESUMEN

During the processes of primary and secondary endosymbiosis, different microalgae evolved to synthesis different storage polysaccharides. In stramenopiles, the main storage polysaccharides are ß-1,3-glucan, or laminarin, in vacuoles. Currently, laminarin is gaining considerable attention due to its application in the food, cosmetic and pharmaceuticals industries, and also its importance in global biogeochemical cycles (especially in the ocean carbon cycle). In this review, the structures, composition, contents, and bioactivity of laminarin were summarized in different algae. It was shown that the general features of laminarin are species-dependence. Furthermore, the proposed biosynthesis and catabolism pathways of laminarin, functions of key genes, and diel regulation of laminarin were also depicted and comprehensively discussed for the first time. However, the complete pathways, functions of genes, and diel regulatory mechanisms of laminarin require more biomolecular studies. This review provides more useful information and identifies the knowledge gap regarding the future studies of laminarin and its applications.


Asunto(s)
Glucanos/metabolismo , Polisacáridos/metabolismo , Estramenopilos , Animales , Organismos Acuáticos , Productos Biológicos/química , Glucanos/química , Polisacáridos/química , Relación Estructura-Actividad
2.
Front Plant Sci ; 11: 598552, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519851

RESUMEN

Different anthropogenic activities result in the continuous increase of metal lead (Pb) in the environment and adversely affect living organisms. Therefore, it is important to investigate the tolerance mechanism in a model organism. Chlamydomonas reinhardtii is an important green eukaryotic model microalga for studying different kinds of biological questions. In this study, the responses of C. reinhardtii were revealed via a comprehensive approach, including physiological, genomic, transcriptomic, glycomic, and bioinformatic techniques. Physiological results showed that the growth rate and soluble protein content were significantly reduced under the high lead stress. Also, the results obtained from the genomic and transcriptomic analyses presented that the endoplasmic reticulum-mediated protein quality control (ERQC) system and endoplasmic reticulum-associated degradation (ERAD) pathway were activated under the third day of high lead stress. The unique upregulated protein disulfide isomerase genes on the ERQC system were proposed to be important for the protein level and protein quality control. The accumulation of specific N-glycans indicated that specific N-glycosylation of proteins might alter the biological functions of proteins to alleviate the Pb stress in alga and/or lead to the degradation of incomplete/misfolded proteins. At the same time, it was observed that genes involved in each process of ERAD were upregulated, suggesting that the ERAD pathway was activated to assist the degradation of incomplete/misfolded proteins. Therefore, it is reasonable to speculate that the reduction of protein level under the high lead stress was related to the activated ERQC system and QRAD pathway. Our findings will provide a solid and reliable foundation and a proposed ERAD working model for further in-depth study of the ERQC system and ERAD pathway under the Pb stress and even other biotic and abiotic stresses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA