Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Immunity ; 55(12): 2405-2418.e7, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36356572

RESUMEN

Current influenza vaccines predominantly induce immunity to the hypervariable hemagglutinin (HA) head, requiring frequent vaccine reformulation. Conversely, the immunosubdominant yet conserved HA stem harbors a supersite that is targeted by broadly neutralizing antibodies (bnAbs), representing a prime target for universal vaccines. Here, we showed that the co-immunization of two HA stem immunogens derived from group 1 and 2 influenza A viruses elicits cross-group protective immunity and neutralizing antibody responses in mice, ferrets, and nonhuman primates (NHPs). Immunized mice were protected from multiple group 1 and 2 viruses, and all animal models showed broad serum-neutralizing activity. A bnAb isolated from an immunized NHP broadly neutralized and protected against diverse viruses, including H5N1 and H7N9. Genetic and structural analyses revealed strong homology between macaque and human bnAbs, illustrating common biophysical constraints for acquiring cross-group specificity. Vaccine elicitation of stem-directed cross-group-protective immunity represents a step toward the development of broadly protective influenza vaccines.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Subtipo H7N9 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Ratones , Humanos , Hemaglutininas , Anticuerpos ampliamente neutralizantes , Glicoproteínas Hemaglutininas del Virus de la Influenza , Anticuerpos Antivirales , Hurones , Anticuerpos Neutralizantes , Inmunización
2.
Nature ; 592(7855): 623-628, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33762730

RESUMEN

Influenza vaccines that confer broad and durable protection against diverse viral strains would have a major effect on global health, as they would lessen the need for annual vaccine reformulation and immunization1. Here we show that computationally designed, two-component nanoparticle immunogens2 induce potently neutralizing and broadly protective antibody responses against a wide variety of influenza viruses. The nanoparticle immunogens contain 20 haemagglutinin glycoprotein trimers in an ordered array, and their assembly in vitro enables the precisely controlled co-display of multiple distinct haemagglutinin proteins in defined ratios. Nanoparticle immunogens that co-display the four haemagglutinins of licensed quadrivalent influenza vaccines elicited antibody responses in several animal models against vaccine-matched strains that were equivalent to or better than commercial quadrivalent influenza vaccines, and simultaneously induced broadly protective antibody responses to heterologous viruses by targeting the subdominant yet conserved haemagglutinin stem. The combination of potent receptor-blocking and cross-reactive stem-directed antibodies induced by the nanoparticle immunogens makes them attractive candidates for a supraseasonal influenza vaccine candidate with the potential to replace conventional seasonal vaccines3.


Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Virus de la Influenza A/clasificación , Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Nanomedicina , Nanopartículas , Animales , Modelos Animales de Enfermedad , Femenino , Hurones/inmunología , Hurones/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Gripe Humana/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares
3.
J Virol ; 94(2)2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694950

RESUMEN

In clinical trials, HIV-1 broadly neutralizing antibodies (bnAbs) effectively lower plasma viremia and delay virus reemergence. The presence of less neutralization-susceptible strains prior to treatment decreases the efficacy of these antibody-based treatments, but neutralization sensitivity often cannot be predicted by sequence analysis alone. We found that phenotypically confirmed CXCR4-utilizing strains are less neutralization sensitive, especially to variable loop 3 (V3 loop)-directed bnAbs, than exclusively CCR5-utilizing strains in some, but not all, cases. Homology modeling suggested that the primary V3 loop bnAb epitope is equally accessible among CCR5- and CXCR4-using strains, although variants that exclusively use CXCR4 have V3 loop protrusions that interfere with CCR5 receptor interactions. Homology modeling also showed that among some, but not all, envelopes with decreased neutralization sensitivity, V1 loop orientation interfered with V3 loop-directed bnAb binding. Thus, there are likely different structural reasons for the coreceptor usage restriction and the different bnAb susceptibilities. Importantly, we show that individuals harboring envelopes with higher likelihood of using CXCR4 or greater predicted V1 loop interference have faster virus rebound and a lower maximum decrease in plasma viremia, respectively, after treatment with a V3 loop bnAb. Knowledge of receptor usage and homology models may be useful in developing future algorithms that predict treatment efficacy with V3 loop bnAbs.IMPORTANCE The efficacy of HIV-1 broadly neutralizing antibody (bnAb) therapies may be compromised by the preexistence of less susceptible variants. Sequence-based methods are needed to predict pretreatment variants' neutralization sensitivities. HIV-1 strains that exclusively use the CXCR4 receptor rather than the CCR5 receptor are less neutralization susceptible, especially to variable loop 3 (V3 loop) bnAbs in some, but not all, instances. While the inability to utilize the CCR5 receptor maps to a predicted protrusion in the envelope V3 loop, this viral determinant does not directly influence V3 loop bnAb sensitivity. Homology modeling predicts that contact between the envelope V1 loop and the antibody impacts V3 loop bnAb susceptibility in some cases. Among pretreatment envelopes, increased probability of using CXCR4 and greater predicted V1 interference are associated with faster virus rebound and a smaller decrease in the plasma virus level, respectively, after V3 loop bnAb treatment. Receptor usage information and homology models may be useful for predicting V3 loop bnAb therapy efficacy.


Asunto(s)
Anticuerpos Neutralizantes/química , Epítopos/química , Anticuerpos Anti-VIH/química , VIH-1/química , Modelos Moleculares , Anticuerpos Neutralizantes/inmunología , Epítopos/inmunología , Femenino , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Humanos , Masculino , Estructura Secundaria de Proteína , Receptores CCR5/química , Receptores CCR5/inmunología
4.
J Proteome Res ; 19(7): 2664-2675, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31928020

RESUMEN

Protein microarrays consist of known proteins spotted onto solid substrates and are used to perform highly multivariate assessments of protein-binding interactions. Human protein arrays are routinely applied to pathogen detection, immune response biomarker profiling, and antibody specificity profiling. Here, we describe and demonstrate a new data processing procedure, gain-scan, in which data were acquired under multiple photomultiplier tube (PMT) settings, followed by data fitting with a power function model to estimate the incident light signals of the array spots. Data acquisition under multiple PMT settings solves the difficulty of determining the single optimal PMT gain setting and allows us to maximize the detection of low-intensity signals while avoiding the saturation of high-intensity ones at the same time. The gain-scan data acquisition and fitting also significantly lower the variances over the detectable range of signals and improve the linear data normalization. The performance of the proposed procedure was verified by analyzing the profiling data of both the human polyclonal serum samples and the monoclonal antibody samples with both technical replicates and biological replicates. We showed that the multigain power function was an appropriate model for describing data acquired under multiple PMT settings. The gain-scan fitting alone or in combination with the linear normalization could effectively reduce the technical variability of the array data and lead to better sample separability and more sensitive differential analysis.


Asunto(s)
Perfilación de la Expresión Génica , Análisis por Matrices de Proteínas , Humanos
5.
Ann N Y Acad Sci ; 1524(1): 65-86, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37020354

RESUMEN

The COVID-19 pandemic has taught us many things, among the most important of which is that vaccines are one of the cornerstones of public health that help make modern longevity possible. While several different vaccines have been successful at stemming the morbidity and mortality associated with various infectious diseases, many pathogens/diseases remain recalcitrant to the development of effective vaccination. Recent advances in vaccine technology, immunology, structural biology, and other fields may yet yield insight that will address these diseases; they may also help improve societies' preparedness for future pandemics. On June 1-4, 2022, experts in vaccinology from academia, industry, and government convened for the Keystone symposium "Progress in Vaccine Development for Infectious Diseases" to discuss state-of-the-art technologies, recent advancements in understanding vaccine-mediated immunity, and new aspects of antigen design to aid vaccine effectiveness.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , Vacunas , Humanos , Pandemias/prevención & control , COVID-19/prevención & control , Vacunas/uso terapéutico , Vacunación , Desarrollo de Vacunas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA