Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 26(2): 493-503, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25060056

RESUMEN

Patients on dialysis require phosphorus binders to prevent hyperphosphatemia and are iron deficient. We studied ferric citrate as a phosphorus binder and iron source. In this sequential, randomized trial, 441 subjects on dialysis were randomized to ferric citrate or active control in a 52-week active control period followed by a 4-week placebo control period, in which subjects on ferric citrate who completed the active control period were rerandomized to ferric citrate or placebo. The primary analysis compared the mean change in phosphorus between ferric citrate and placebo during the placebo control period. A sequential gatekeeping strategy controlled study-wise type 1 error for serum ferritin, transferrin saturation, and intravenous iron and erythropoietin-stimulating agent usage as prespecified secondary outcomes in the active control period. Ferric citrate controlled phosphorus compared with placebo, with a mean treatment difference of -2.2±0.2 mg/dl (mean±SEM) (P<0.001). Active control period phosphorus was similar between ferric citrate and active control, with comparable safety profiles. Subjects on ferric citrate achieved higher mean iron parameters (ferritin=899±488 ng/ml [mean±SD]; transferrin saturation=39%±17%) versus subjects on active control (ferritin=628±367 ng/ml [mean±SD]; transferrin saturation=30%±12%; P<0.001 for both). Subjects on ferric citrate received less intravenous elemental iron (median=12.95 mg/wk ferric citrate; 26.88 mg/wk active control; P<0.001) and less erythropoietin-stimulating agent (median epoetin-equivalent units per week: 5306 units/wk ferric citrate; 6951 units/wk active control; P=0.04). Hemoglobin levels were statistically higher on ferric citrate. Thus, ferric citrate is an efficacious and safe phosphate binder that increases iron stores and reduces intravenous iron and erythropoietin-stimulating agent use while maintaining hemoglobin.


Asunto(s)
Compuestos Férricos/uso terapéutico , Hierro/metabolismo , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/terapia , Fósforo/metabolismo , Diálisis Renal , Anemia Ferropénica/metabolismo , Anemia Ferropénica/prevención & control , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Hiperfosfatemia/metabolismo , Hiperfosfatemia/prevención & control , Israel , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Resultado del Tratamiento , Estados Unidos
2.
Plant Cell Physiol ; 54(2): e1, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23220694

RESUMEN

The Plant Ontology (PO; http://www.plantontology.org/) is a publicly available, collaborative effort to develop and maintain a controlled, structured vocabulary ('ontology') of terms to describe plant anatomy, morphology and the stages of plant development. The goals of the PO are to link (annotate) gene expression and phenotype data to plant structures and stages of plant development, using the data model adopted by the Gene Ontology. From its original design covering only rice, maize and Arabidopsis, the scope of the PO has been expanded to include all green plants. The PO was the first multispecies anatomy ontology developed for the annotation of genes and phenotypes. Also, to our knowledge, it was one of the first biological ontologies that provides translations (via synonyms) in non-English languages such as Japanese and Spanish. As of Release #18 (July 2012), there are about 2.2 million annotations linking PO terms to >110,000 unique data objects representing genes or gene models, proteins, RNAs, germplasm and quantitative trait loci (QTLs) from 22 plant species. In this paper, we focus on the plant anatomical entity branch of the PO, describing the organizing principles, resources available to users and examples of how the PO is integrated into other plant genomics databases and web portals. We also provide two examples of comparative analyses, demonstrating how the ontology structure and PO-annotated data can be used to discover the patterns of expression of the LEAFY (LFY) and terpene synthase (TPS) gene homologs.


Asunto(s)
Genoma de Planta , Genómica/métodos , Plantas/anatomía & histología , Plantas/genética , Programas Informáticos , Transferasas Alquil y Aril/genética , Bases de Datos Genéticas , Flores/genética , Internet , Anotación de Secuencia Molecular , Familia de Multigenes , Fenotipo , Hojas de la Planta/anatomía & histología , Proteínas de Plantas/genética
3.
Am J Bot ; 99(8): 1263-75, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22847540

RESUMEN

PREMISE OF THE STUDY: Bio-ontologies are essential tools for accessing and analyzing the rapidly growing pool of plant genomic and phenomic data. Ontologies provide structured vocabularies to support consistent aggregation of data and a semantic framework for automated analyses and reasoning. They are a key component of the semantic web. METHODS: This paper provides background on what bio-ontologies are, why they are relevant to botany, and the principles of ontology development. It includes an overview of ontologies and related resources that are relevant to plant science, with a detailed description of the Plant Ontology (PO). We discuss the challenges of building an ontology that covers all green plants (Viridiplantae). KEY RESULTS: Ontologies can advance plant science in four keys areas: (1) comparative genetics, genomics, phenomics, and development; (2) taxonomy and systematics; (3) semantic applications; and (4) education. CONCLUSIONS: Bio-ontologies offer a flexible framework for comparative plant biology, based on common botanical understanding. As genomic and phenomic data become available for more species, we anticipate that the annotation of data with ontology terms will become less centralized, while at the same time, the need for cross-species queries will become more common, causing more researchers in plant science to turn to ontologies.


Asunto(s)
Biología Computacional/métodos , Plantas/genética , Botánica/métodos , Interpretación Estadística de Datos , Sistemas de Administración de Bases de Datos , Bases de Datos Factuales , Genoma de Planta/genética , Genómica , Anotación de Secuencia Molecular , Fenotipo , Plantas/anatomía & histología , Plantas/clasificación , Semántica , Terminología como Asunto , Vocabulario Controlado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA