Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 89(10): e0063423, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37800930

RESUMEN

Hydrogen (H2) is the primary electron donor for methane formation in ruminants, but the H2-producing organisms involved are largely uncharacterized. This work integrated studies of microbial physiology and genomics to characterize rumen bacterial isolate NK3A20 of the family Lachnospiraceae. Isolate NK3A20 was the first recognized isolate of the NK3A20 group, which is among the ten most abundant bacterial genera in 16S rRNA gene surveys of rumen microbiota. NK3A20 produced acetate, butyrate, H2, and formate from glucose. The end product ratios varied when grown with different substrates and at different H2 partial pressures. NK3A20 produced butyrate as a major product using glucose or under high H2 partial pressures and switched to mainly acetate in the presence of galacturonic acid (an oxidized sugar) or in coculture with a methanogen. Growth with galacturonic acid was faster at elevated H2 concentrations, while elevated H2 slowed growth with glucose. Genome analyses revealed the presence of multiple hydrogenases including a membrane-bound Ech hydrogenase, an electron bifurcating butyryl-CoA dehydrogenase (Bcd-Etf), and an Rnf complex that may be involved in modulating the observed metabolic pathway changes, providing insight into H2 formation in the rumen. IMPORTANCE The genus-level NK3A20 group is one of the ten most abundant genera of rumen bacteria. Like most of the rumen bacteria that produce the hydrogen that is converted to methane in the rumen, it is understudied, without any previously characterized isolates. We investigated isolate NK3A20, a cultured member of this genus, and showed that it modulates hydrogen production in response to its growth substrates and the hydrogen concentration in its environment. Low-hydrogen concentrations stimulated hydrogen formation, while high concentrations inhibited its formation and shifted the fermentation to more reduced organic acid products. We found that growth on uronic acids, components of certain plant polymers, resulted in low hydrogen yields compared to glucose, which could aid in the selection of low-methane feeds. A better understanding of the major genera that produce hydrogen in the rumen is part of developing strategies to mitigate biogenic methane emitted by livestock agriculture.


Asunto(s)
Euryarchaeota , Rumen , Animales , Rumen/microbiología , Técnicas de Cocultivo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Bacterias/genética , Rumiantes , Euryarchaeota/metabolismo , Fermentación , Glucosa/metabolismo , Clostridiales/metabolismo , Acetatos/metabolismo , Butiratos/metabolismo , Metano/metabolismo , Hidrógeno/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-37170869

RESUMEN

Two strains of Gram-negative, anaerobic, rod-shaped bacteria, from an abundant but uncharacterized rumen bacterial group of the order 'Christensenellales', were phylogenetically and phenotypically characterized. These strains, designated R-7T and WTE2008T, shared 98.6-99.0 % sequence identity between their 16S rRNA gene sequences. R-7T and WTE2008T clustered together on a distinct branch from other Christensenellaceae strains and had <88.1 % sequence identity to the closest type-strain sequence from Luoshenia tenuis NSJ-44T. The genome sequences of R-7T and WTE2008T had 83.6 % average nucleotide identity to each other, and taxonomic assignment using the Genome Taxonomy Database indicates these are separate species within a novel family of the order 'Christensenellales'. Cells of R-7T and WTE2008T lacked any obvious appendages and their cell wall ultra-structures were characteristic of Gram-negative bacteria. The five most abundant cellular fatty acids of both strains were C16 : 0, C16 : 0 iso, C17 : 0 anteiso, C18 : 0 and C15 : 0 anteiso. The strains used a wide range of the 23 soluble carbon sources tested, and grew best on cellobiose, but not on sugar-alcohols. Xylan and pectin were fermented by both strains, but not cellulose. Acetate, hydrogen, ethanol and lactate were the major fermentation end products. R-7T produced considerably more hydrogen than WTE2008T, which produced more lactate. Based on these analyses, Aristaeellaceae fam. nov. and Aristaeella gen. nov., with type species Aristaeella hokkaidonensis sp. nov., are proposed. Strains R-7T (=DSM 112795T=JCM 34733T) and WTE2008T (=DSM 112788T=JCM 34734T) are the proposed type strains for Aristaeella hokkaidonensis sp. nov. and Aristaeella lactis sp. nov., respectively.


Asunto(s)
Ácidos Grasos , Rumen , Animales , Ácidos Grasos/química , ARN Ribosómico 16S/genética , Filogenia , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Análisis de Secuencia de ADN , Bacterias Gramnegativas , Hidrógeno
3.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37762041

RESUMEN

Pectin is a complex polysaccharide that forms a substantial proportion of the plant's middle lamella of forage ingested by grazing ruminants. Methanol in the rumen is derived mainly from methoxy groups released from pectin by the action of pectin methylesterase (PME) and is subsequently used by rumen methylotrophic methanogens that reduce methanol to produce methane (CH4). Members of the genus Butyrivibrio are key pectin-degrading rumen bacteria that contribute to methanol formation and have important roles in fibre breakdown, protein digestion, and the biohydrogenation of fatty acids. Therefore, methanol release from pectin degradation in the rumen is a potential target for CH4 mitigation technologies. Here, we present the crystal structures of PMEs belonging to the carbohydrate esterase family 8 (CE8) from Butyrivibrio proteoclasticus and Butyrivibrio fibrisolvens, determined to a resolution of 2.30 Å. These enzymes, like other PMEs, are right-handed ß-helical proteins with a well-defined catalytic site and reaction mechanisms previously defined in insect, plant, and other bacterial pectin methylesterases. Potential substrate binding domains are also defined for the enzymes.


Asunto(s)
Metanol , Rumen , Animales , Butyrivibrio , Carboxilesterasa , Bacterias , Pectinas
4.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30478228

RESUMEN

Rumen bacterial species belonging to the genus Butyrivibrio are important degraders of plant polysaccharides, particularly hemicelluloses (arabinoxylans) and pectin. Currently, four species are recognized; they have very similar substrate utilization profiles, but little is known about how these microorganisms are able to coexist in the rumen. To investigate this question, Butyrivibrio hungatei MB2003 and Butyrivibrio proteoclasticus B316T were grown alone or in coculture on xylan or pectin, and their growth, release of sugars, fermentation end products, and transcriptomes were examined. In monocultures, B316T was able to grow well on xylan and pectin, while MB2003 was unable to utilize either of these insoluble substrates to support significant growth. Cocultures of B316T grown with MB2003 revealed that MB2003 showed growth almost equivalent to that of B316T when either xylan or pectin was supplied as the substrate. The effect of coculture on the transcriptomes of B316T and MB2003 was assessed; B316T transcription was largely unaffected by the presence of MB2003, but MB2003 expressed a wide range of genes encoding proteins for carbohydrate degradation, central metabolism, oligosaccharide transport, and substrate assimilation, in order to compete with B316T for the released sugars. These results suggest that B316T has a role as an initiator of primary solubilization of xylan and pectin, while MB2003 competes effectively for the released soluble sugars to enable its growth and maintenance in the rumen.IMPORTANCE Feeding a future global population of 9 billion people and climate change are the primary challenges facing agriculture today. Ruminant livestock are important food-producing animals, and maximizing their productivity requires an understanding of their digestive systems and the roles played by rumen microbes in plant polysaccharide degradation. Butyrivibrio species are a phylogenetically diverse group of bacteria and are commonly found in the rumen, where they are a substantial source of polysaccharide-degrading enzymes for the depolymerization of lignocellulosic material. Our findings suggest that closely related species of Butyrivibrio have developed unique strategies for the degradation of plant fiber and the subsequent assimilation of carbohydrates in order to coexist in the competitive rumen environment. The identification of genes expressed during these competitive interactions gives further insight into the enzymatic machinery used by these bacteria as they degrade the xylan and pectin components of plant fiber.


Asunto(s)
Butyrivibrio/crecimiento & desarrollo , Butyrivibrio/metabolismo , Pectinas/metabolismo , Xilanos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Butyrivibrio/genética , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Filogenia , Azúcares/metabolismo
5.
Appl Environ Microbiol ; 86(1)2019 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-31653790

RESUMEN

Plant polysaccharide breakdown by microbes in the rumen is fundamental to digestion in ruminant livestock. Bacterial species belonging to the rumen genera Butyrivibrio and Pseudobutyrivibrio are important degraders and utilizers of lignocellulosic plant material. These bacteria degrade polysaccharides and ferment the released monosaccharides to yield short-chain fatty acids that are used by the ruminant for growth and the production of meat, milk, and fiber products. Although rumen Butyrivibrio and Pseudobutyrivibrio species are regarded as common rumen inhabitants, their polysaccharide-degrading and carbohydrate-utilizing enzymes are not well understood. In this study, we analyzed the genomes of 40 Butyrivibrio and 6 Pseudobutyrivibrio strains isolated from the plant-adherent fraction of New Zealand dairy cows to explore the polysaccharide-degrading potential of these important rumen bacteria. Comparative genome analyses combined with phylogenetic analysis of their 16S rRNA genes and short-chain fatty acid production patterns provide insight into the genomic diversity and physiology of these bacteria and divide Butyrivibrio into 3 species clusters. Rumen Butyrivibrio bacteria were found to encode a large and diverse spectrum of degradative carbohydrate-active enzymes (CAZymes) and binding proteins. In total, 4,421 glycoside hydrolases (GHs), 1,283 carbohydrate esterases (CEs), 110 polysaccharide lyases (PLs), 3,605 glycosyltransferases (GTs), and 1,706 carbohydrate-binding protein modules (CBM) with predicted activities involved in the depolymerization and transport of the insoluble plant polysaccharides were identified. Butyrivibrio genomes had similar patterns of CAZyme families but varied greatly in the number of genes within each category in the Carbohydrate-Active Enzymes database (CAZy), suggesting some level of functional redundancy. These results suggest that rumen Butyrivibrio species occupy similar niches but apply different degradation strategies to be able to coexist in the rumen.IMPORTANCE Feeding a global population of 8 billion people and climate change are the primary challenges facing agriculture today. Ruminant livestock are important food-producing animals, and maximizing their productivity requires an understanding of their digestive systems and the roles played by rumen microbes in plant polysaccharide degradation. Members of the genera Butyrivibrio and Pseudobutyrivibrio are a phylogenetically diverse group of bacteria and are commonly found in the rumen, where they are a substantial source of polysaccharide-degrading enzymes for the depolymerization of lignocellulosic material. Our findings have highlighted the immense enzymatic machinery of Butyrivibrio and Pseudobutyrivibrio species for the degradation of plant fiber, suggesting that these bacteria occupy similar niches but apply different degradation strategies in order to coexist in the competitive rumen environment.


Asunto(s)
Butyrivibrio/genética , Metabolismo de los Hidratos de Carbono/genética , Rumen/microbiología , Animales , Butyrivibrio/clasificación , Butyrivibrio/aislamiento & purificación , Butyrivibrio/metabolismo , Bovinos , Esterasas/genética , Genoma Bacteriano , Genómica , Glicósido Hidrolasas/genética , Glicosiltransferasas/genética , Liasas/genética , Filogenia , Polisacáridos/metabolismo , ARN Ribosómico 16S/genética
6.
J Dairy Sci ; 101(8): 7661-7679, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29859694

RESUMEN

Ruminants are dependent on the microbiota (bacteria, protozoa, archaea, and fungi) that inhabit the reticulo-rumen for digestion of feedstuffs. Nearly 70% of energy and 50% of protein requirements for dairy cows are met by microbial fermentation in the rumen, emphasizing the need to characterize the role of microbes in feed breakdown and nutrient utilization. Over the past 2 decades, next-generation sequencing technologies have allowed for rapid expansion of knowledge concerning microbial populations and alterations in response to forages, concentrates, supplements, and probiotics in the rumen. Advances in gene sequencing and emerging bioinformatic tools have allowed for increased throughput of data to aid in our understanding of the functional relevance of microbial genomes. In particular, metagenomics can identify specific genes involved in metabolic pathways, and metatranscriptomics can describe the transcriptional activity of microbial genes. These powerful approaches help untangle the complex interactions between microbes and dietary nutrients so that we can more fully understand the physiology of feed digestion in the rumen. Application of genomics-based approaches offers promise in unraveling microbial niches and respective gene repertoires to potentiate fiber and nonfiber carbohydrate digestion, microbial protein synthesis, and healthy biohydrogenation. New information on microbial genomics and interactions with dietary components will more clearly define pathways in the rumen to positively influence milk yield and components.


Asunto(s)
Bovinos/metabolismo , Dieta , Lactancia/fisiología , Rumen/metabolismo , Rumen/microbiología , Alimentación Animal , Animales , Archaea , Digestión/fisiología , Femenino , Fermentación , Leche/metabolismo
7.
Anaerobe ; 54: 31-38, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30055268

RESUMEN

Sharpea and Kandleria are associated with rumen samples from low-methane-emitting sheep. Four strains of each genus were studied in culture, and the genomes of nine strains were analysed, to understand the physiology of these bacteria. All eight cultures grew equally well with d-glucose, d-fructose, d-galactose, cellobiose, and sucrose supplementation. d-Lactate was the major end product, with small amounts of the mixed acid fermentation products formate, acetate and ethanol. Genes encoding the enzymes necessary for this fermentation pattern were found in the genomes of four strains of Sharpea and five of Kandleria. Strains of Sharpea produced traces of hydrogen gas in pure culture, but strains of Kandleria did not. This was consistent with finding that Sharpea, but not Kandleria, genomes contained genes coding for hydrogenases. It was speculated that, in co-culture with a methanogen, Sharpea and Kandleria might change their fermentation pattern from a predominately homolactic to a predominately mixed acid fermentation, which would result in a decrease in lactate production and an increase in formation of acetate and perhaps ethanol. However, Sharpea and Kandleria did not change their fermentation products when co-cultured with Methanobrevibacter olleyae, a methanogen that can use both hydrogen and formate, and lactate remained the major end product. The results of this study therefore support a hypothesis that explains the link between lower methane yields and larger populations of Sharpea and Kandleria in the rumens of sheep.


Asunto(s)
Firmicutes/metabolismo , Ácido Láctico/metabolismo , Lactobacillales/metabolismo , Metano/metabolismo , Methanobrevibacter/crecimiento & desarrollo , Rumen/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Cocultivo , Fermentación , Firmicutes/genética , Firmicutes/crecimiento & desarrollo , Firmicutes/aislamiento & purificación , Hidrógeno/metabolismo , Hidrogenasas/genética , Hidrogenasas/metabolismo , Lactobacillales/genética , Lactobacillales/crecimiento & desarrollo , Lactobacillales/aislamiento & purificación , Methanobrevibacter/metabolismo , Ovinos
8.
Genome Res ; 24(9): 1517-25, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24907284

RESUMEN

Ruminant livestock represent the single largest anthropogenic source of the potent greenhouse gas methane, which is generated by methanogenic archaea residing in ruminant digestive tracts. While differences between individual animals of the same breed in the amount of methane produced have been observed, the basis for this variation remains to be elucidated. To explore the mechanistic basis of this methane production, we measured methane yields from 22 sheep, which revealed that methane yields are a reproducible, quantitative trait. Deep metagenomic and metatranscriptomic sequencing demonstrated a similar abundance of methanogens and methanogenesis pathway genes in high and low methane emitters. However, transcription of methanogenesis pathway genes was substantially increased in sheep with high methane yields. These results identify a discrete set of rumen methanogens whose methanogenesis pathway transcription profiles correlate with methane yields and provide new targets for CH4 mitigation at the levels of microbiota composition and transcriptional regulation.


Asunto(s)
Proteínas Arqueales/genética , Metagenoma , Metano/biosíntesis , Microbiota , Rumen/microbiología , Ovinos/microbiología , Animales , Archaea/genética , Archaea/metabolismo , Proteínas Arqueales/metabolismo , Secuencia de Bases , Datos de Secuencia Molecular , Fenotipo , Carácter Cuantitativo Heredable , Rumen/metabolismo , Ovinos/metabolismo , Transcriptoma
9.
N Z Vet J ; 70(5): 245-247, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35762148
10.
Environ Microbiol ; 18(9): 3010-21, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26643468

RESUMEN

Symbiotic associations are ubiquitous in the microbial world and have a major role in shaping the evolution of both partners. One of the most interesting mutualistic relationships exists between protozoa and methanogenic archaea in the fermentative forestomach (rumen) of ruminant animals. Methanogens reside within and on the surface of protozoa as symbionts, and interspecies hydrogen transfer is speculated to be the main driver for physical associations observed between the two groups. In silico analyses of several rumen methanogen genomes have previously shown that up to 5% of genes encode adhesin-like proteins, which may be central to rumen interspecies attachment. We hypothesized that adhesin-like proteins on methanogen cell surfaces facilitate attachment to protozoal hosts. Using phage display technology, we have identified a protein (Mru_1499) from Methanobrevibacter ruminantium M1 as an adhesin that binds to a broad range of rumen protozoa (including the genera Epidinium and Entodinium). This unique adhesin also binds the cell surface of the bacterium Butyrivibrio proteoclasticus, suggesting a broad adhesion spectrum for this protein.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Arqueales/metabolismo , Cilióforos/microbiología , Hidrógeno/metabolismo , Metano/metabolismo , Methanobrevibacter/metabolismo , Rumen/microbiología , Adhesinas Bacterianas/genética , Animales , Proteínas Arqueales/genética , Bovinos , Cilióforos/fisiología , Methanobrevibacter/clasificación , Methanobrevibacter/genética , Methanobrevibacter/aislamiento & purificación , Rumen/parasitología
11.
BMC Genomics ; 15: 356, 2014 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-24886150

RESUMEN

BACKGROUND: In silico, secretome proteins can be predicted from completely sequenced genomes using various available algorithms that identify membrane-targeting sequences. For metasecretome (collection of surface, secreted and transmembrane proteins from environmental microbial communities) this approach is impractical, considering that the metasecretome open reading frames (ORFs) comprise only 10% to 30% of total metagenome, and are poorly represented in the dataset due to overall low coverage of metagenomic gene pool, even in large-scale projects. RESULTS: By combining secretome-selective phage display and next-generation sequencing, we focused the sequence analysis of complex rumen microbial community on the metasecretome component of the metagenome. This approach achieved high enrichment (29 fold) of secreted fibrolytic enzymes from the plant-adherent microbial community of the bovine rumen. In particular, we identified hundreds of heretofore rare modules belonging to cellulosomes, cell-surface complexes specialised for recognition and degradation of the plant fibre. CONCLUSIONS: As a method, metasecretome phage display combined with next-generation sequencing has a power to sample the diversity of low-abundance surface and secreted proteins that would otherwise require exceptionally large metagenomic sequencing projects. As a resource, metasecretome display library backed by the dataset obtained by next-generation sequencing is ready for i) affinity selection by standard phage display methodology and ii) easy purification of displayed proteins as part of the virion for individual functional analysis.


Asunto(s)
Bacteriófagos/metabolismo , Técnicas de Visualización de Superficie Celular , Metagenoma/genética , Metagenómica/métodos , Rumen/microbiología , Animales , Bovinos , Celulosomas/metabolismo , Bases de Datos de Proteínas , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN
12.
Microbiol Resour Announc ; 13(6): e0026724, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38651913

RESUMEN

Butyrivibrio are anaerobic bacteria and members of the family Lachnospiraceae with important roles in fiber digestion in both animals and humans. This report describes the complete genome of Butyrivibrio fibrisolvens type strain D1T (DSM 3071) consisting of a chromosome (CP146963), megaplasmid (pNP243), and small plasmid (pNP21).

13.
Genome Biol ; 25(1): 32, 2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38263062

RESUMEN

BACKGROUND: Methanomassiliicoccales are a recently identified order of methanogens that are diverse across global environments particularly the gastrointestinal tracts of animals; however, their metabolic capacities are defined via a limited number of cultured strains. RESULTS: Here, we profile and analyze 243 Methanomassiliicoccales genomes assembled from cultured representatives and uncultured metagenomes recovered from various biomes, including the gastrointestinal tracts of different animal species. Our analyses reveal the presence of numerous undefined genera and genetic variability in metabolic capabilities within Methanomassiliicoccales lineages, which is essential for adaptation to their ecological niches. In particular, gastrointestinal tract Methanomassiliicoccales demonstrate the presence of co-diversified members with their hosts over evolutionary timescales and likely originated in the natural environment. We highlight the presence of diverse clades of vitamin transporter BtuC proteins that distinguish Methanomassiliicoccales from other archaeal orders and likely provide a competitive advantage in efficiently handling B12. Furthermore, genome-centric metatranscriptomic analysis of ruminants with varying methane yields reveal elevated expression of select Methanomassiliicoccales genera in low methane animals and suggest that B12 exchanges could enable them to occupy ecological niches that possibly alter the direction of H2 utilization. CONCLUSIONS: We provide a comprehensive and updated account of divergent Methanomassiliicoccales lineages, drawing from numerous uncultured genomes obtained from various habitats. We also highlight their unique metabolic capabilities involving B12, which could serve as promising targets for mitigating ruminant methane emissions by altering H2 flow.


Asunto(s)
Archaea , Evolución Biológica , Animales , Filogenia , Metano , Rumiantes
14.
Microbiol Resour Announc ; 13(4): e0004324, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38426731

RESUMEN

Methanosphaera spp. are methylotrophic methanogenic archaea and members of the order Methanobacteriales with few cultured representatives. Methanosphaera sp. ISO3-F5 was isolated from sheep rumen contents in New Zealand. Here, we report its complete genome, consisting of a large chromosome and a megaplasmid (GenBank accession numbers CP118753 and CP118754, respectively).

15.
Proteins ; 81(5): 911-7, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23345031

RESUMEN

Butyrivibrio proteoclasticus is a significant component of the microbial population of the rumen of dairy cattle. It is a xylan-degrading organism whose genome encodes a large number of open reading frames annotated as fiber-degrading enzymes. We have determined the three-dimensional structure of Est2A, an acetyl xylan esterase from B. proteoclasticus, at 2.1 Å resolution, along with the structure of an inactive mutant (H351A) at 2.0 Å resolution. The structure reveals two domains-a C-terminal SGNH domain and an N-terminal jelly-roll domain typical of CE2 family structures. The structures are accompanied by experimentally determined enzymatic parameters against two model substrates, para-nitrophenyl acetate and para-nitrophenyl butyrate. The suite of fiber-degrading enzymes produced by B. proteoclasticus provides a rich source of new enzymes of potential use in industrial settings.


Asunto(s)
Acetilesterasa/química , Acetilesterasa/metabolismo , Butyrivibrio/enzimología , Bovinos/microbiología , Acetilesterasa/genética , Animales , Butyrivibrio/genética , Butyrivibrio/metabolismo , Celulosa/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica
16.
Curr Res Microb Sci ; 4: 100189, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122845

RESUMEN

Rumen methanogenic archaea use by-products of fermentation to carry out methanogenesis for energy generation. A key fermentation by-product is hydrogen (H2), which acts as the source of reducing potential for methane (CH4) formation in hydrogenotrophic methanogens. The in vitro cultivation of hydrogenotrophic rumen methanogens requires pressurised H2 which limits the ability to conduct high-throughput screening experiments with these organisms. The genome of the hydrogenotrophic methanogen Methanobrevibacter boviskoreani JH1T harbors genes encoding an NADP-dependent alcohol dehydrogenase and a F420-dependent NADP reductase, which may facilitate the transfer of reducing potential from ethanol to F420 via NADP. The aim of this study was to explore the anaerobic culturing of JH1T without pressurised H2, using a variety of short chain alcohols. The results demonstrate that in the absence of H2, JHIT can use ethanol, 1-propanol, and 1-butanol but not methanol, as a source of reducing potential for methanogenesis. The ability to use ethanol to drive CH4 formation in JH1T makes it possible to develop a high throughput culture-based bioassay enabling screening of potential anti-methanogen compounds. The development of this resource will help researchers globally to accelerate the search for methane mitigation technologies for ruminant animals. Global emissions pathways that are consistent with the temperature goal of the Paris Agreement, rely on substantial reductions of agricultural greenhouse gasses, particularly from ruminant animals.

17.
J Proteome Res ; 11(1): 131-42, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22060546

RESUMEN

Plant polysaccharide-degrading rumen microbes are fundamental to the health and productivity of ruminant animals. Butyrivibrio proteoclasticus B316(T) is a gram-positive, butyrate-producing anaerobic bacterium with a key role in hemicellulose degradation in the rumen. Gel-based proteomics was used to examine the growth-phase-dependent abundance patterns of secreted proteins recovered from cells grown in vitro with xylan or xylose provided as the sole supplementary carbon source. Five polysaccharidases and two carbohydrate-binding proteins (CBPs) were among 30 identified secreted proteins. The endo-1,4-ß-xylanase Xyn10B was 17.5-fold more abundant in the culture medium of xylan-grown cells, which suggests it plays an important role in hemicellulose degradation. The secretion of three nonxylanolytic enzymes and two CBPs implies they augment hemicellulose degradation by hydrolysis or disruption of associated structural polysaccharides. Sixteen ATP-binding cassette (ABC) transporter substrate-binding proteins were identified, several of which had altered relative abundance levels between growth conditions, which suggests they are important for oligosaccharide uptake. This study demonstrates that B. proteoclasticus modulates the secretion of hemicellulose-degrading enzymes and ATP-dependent sugar uptake systems in response to growth substrate and supports the notion that this organism makes an important contribution to polysaccharide degradation in the rumen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Butyrivibrio/enzimología , Glicósido Hidrolasas/metabolismo , Proteoma/metabolismo , Animales , Proteínas Bacterianas/química , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Medios de Cultivo Condicionados/química , Glicósido Hidrolasas/química , Lignina , Fragmentos de Péptidos/química , Estructura Terciaria de Proteína , Proteolisis , Proteoma/química , Rumen/microbiología , Xilanos/química
18.
J Biol Chem ; 286(46): 39882-92, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21953465

RESUMEN

An unresolved question in the bioenergetics of methanogenic archaea is how the generation of proton-motive and sodium-motive forces during methane production is used to synthesize ATP by the membrane-bound A(1)A(o)-ATP synthase, with both proton- and sodium-coupled enzymes being reported in methanogens. To address this question, we investigated the biochemical characteristics of the A(1)A(o)-ATP synthase (MbbrA(1)A(o)) of Methanobrevibacter ruminantium M1, a predominant methanogen in the rumen. Growth of M. ruminantium M1 was inhibited by protonophores and sodium ionophores, demonstrating that both ion gradients were essential for growth. To study the role of these ions in ATP synthesis, the ahaHIKECFABD operon encoding the MbbrA(1)A(o) was expressed in Escherichia coli strain DK8 (Δatp) and purified yielding a 9-subunit protein with an SDS-stable c oligomer. Analysis of the c subunit amino acid sequence revealed that it consisted of four transmembrane helices, and each hairpin displayed a complete Na(+)-binding signature made up of identical amino acid residues. The purified MbbrA(1)A(o) was stimulated by sodium ions, and Na(+) provided pH-dependent protection against inhibition by dicyclohexylcarbodiimide but not tributyltin chloride. ATP synthesis in inverted membrane vesicles lacking sodium ions was driven by a membrane potential that was sensitive to cyanide m-chlorophenylhydrazone but not to monensin. ATP synthesis could not be driven by a chemical gradient of sodium ions unless a membrane potential was imposed. ATP synthesis under these conditions was sensitive to monensin but not cyanide m-chlorophenylhydrazone. These data suggest that the M. ruminantium M1 A(1)A(o)-ATP synthase exhibits all the properties of a sodium-coupled enzyme, but it is also able to use protons to drive ATP synthesis under conditions that favor proton coupling, such as low pH and low levels of sodium ions.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Methanobrevibacter/enzimología , ATPasas de Translocación de Protón/metabolismo , Sodio/metabolismo , Adenosina Trifosfato/genética , Cationes Monovalentes/metabolismo , Methanobrevibacter/genética , Monensina/farmacología , Operón/fisiología , Estructura Secundaria de Proteína , Ionóforos de Protónes/farmacología , ATPasas de Translocación de Protón/antagonistas & inhibidores , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/genética , Ionóforos de Sodio/farmacología
19.
Anim Microbiome ; 4(1): 22, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35287765

RESUMEN

Molecular hydrogen (H2) and formate (HCOO-) are metabolic end products of many primary fermenters in the mammalian gut. Both play a vital role in fermentation where they are electron sinks for individual microbes in an anaerobic environment that lacks external electron acceptors. If H2 and/or formate accumulate within the gut ecosystem, the ability of primary fermenters to regenerate electron carriers may be inhibited and microbial metabolism and growth disrupted. Consequently, H2- and/or formate-consuming microbes such as methanogens and homoacetogens play a key role in maintaining the metabolic efficiency of primary fermenters. There is increasing interest in identifying approaches to manipulate mammalian gut environments for the benefit of the host and the environment. As H2 and formate are important mediators of interspecies interactions, an understanding of their production and utilisation could be a significant entry point for the development of successful interventions. Ruminant methane mitigation approaches are discussed as a model to help understand the fate of H2 and formate in gut systems.

20.
Trends Microbiol ; 30(3): 209-212, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35027237

RESUMEN

Disposal of electrons generated during the fermentation of ingested feed is a fundamental feature of anaerobic microbial gut ecosystems. Here, we focus on the well-studied rumen environment to highlight how electrons are transferred through anaerobic fermentation pathways and how manipulating this electron flow is important to reducing methane emissions from ruminants. Priorities for research that can accelerate understanding in this area are highlighted.


Asunto(s)
Ecosistema , Electrones , Animales , Fermentación , Metano/metabolismo , Rumen , Rumiantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA