Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO Rep ; 25(3): 991-1021, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38243137

RESUMEN

Neuronal maturation is the phase during which neurons acquire their final characteristics in terms of morphology, electrical activity, and metabolism. However, little is known about the metabolic pathways governing neuronal maturation. Here, we investigate the contribution of the main metabolic pathways, namely glucose, glutamine, and fatty acid oxidation, during the maturation of primary rat hippocampal neurons. Blunting glucose oxidation through the genetic and chemical inhibition of the mitochondrial pyruvate transporter reveals that this protein is critical for the production of glutamate, which is required for neuronal arborization, proper dendritic elongation, and spine formation. Glutamate supplementation in the early phase of differentiation restores morphological defects and synaptic function in mitochondrial pyruvate transporter-inhibited cells. Furthermore, the selective activation of metabotropic glutamate receptors restores the impairment of neuronal differentiation due to the reduced generation of glucose-derived glutamate and rescues synaptic local translation. Fatty acid oxidation does not impact neuronal maturation. Whereas glutamine metabolism is important for mitochondria, it is not for endogenous glutamate production. Our results provide insights into the role of glucose-derived glutamate as a key player in neuronal terminal differentiation.


Asunto(s)
Glutamina , Transportadores de Ácidos Monocarboxílicos , Ratas , Animales , Glutamina/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neuronas/metabolismo , Ácido Glutámico/metabolismo , Glucosa/metabolismo , Ácidos Grasos/metabolismo
2.
EMBO Rep ; 23(9): e55299, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35796299

RESUMEN

Lifespan is determined by complex and tangled mechanisms that are largely unknown. The early postnatal stage has been proposed to play a role in lifespan, but its contribution is still controversial. Here, we show that a short rapamycin treatment during early life can prolong lifespan in Mus musculus and Drosophila melanogaster. Notably, the same treatment at later time points has no effect on lifespan, suggesting that a specific time window is involved in lifespan regulation. We also find that sulfotransferases are upregulated during early rapamycin treatment both in newborn mice and in Drosophila larvae, and transient dST1 overexpression in Drosophila larvae extends lifespan. Our findings unveil a novel link between early-life treatments and long-term effects on lifespan.


Asunto(s)
Proteínas de Drosophila , Longevidad , Envejecimiento/fisiología , Animales , Drosophila/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Longevidad/fisiología , Ratones , Sirolimus/farmacología
3.
Gut ; 72(1): 109-128, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35568393

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinomas (PDACs) include heterogeneous mixtures of low-grade cells forming pseudoglandular structures and compact nests of high-grade cells organised in non-glandular patterns. We previously reported that low-grade PDAC cells display high expression of interferon regulatory factor 1 (IRF1), a pivotal transcription factor of the interferon (IFN) system, suggesting grade-specific, cell-intrinsic activation of IFN responses. Here, we set out to determine the molecular bases and the functional impact of the activation of IFN-regulated responses in human PDACs. DESIGN: We first confirmed the correlation between glandular differentiation and molecular subtypes of PDAC on the one hand, and the expression of IRF1 and IFN-stimulated genes on the other. We next used unbiased omics approaches to systematically analyse basal and IFN-regulated responses in low-grade and high-grade PDAC cells, as well as the impact of IRF1 on gene expression programmes and metabolic profiles of PDAC cells. RESULTS: High-level expression of IRF1 in low-grade PDAC cells was controlled by endodermal lineage-determining transcription factors. IRF1-regulated gene expression equipped low-grade PDAC cells with distinctive properties related to antigen presentation and processing as well as responsiveness to IFN stimulation. Notably, IRF1 also controlled the characteristic metabolic profile of low-grade PDAC cells, suppressing both mitochondrial respiration and fatty acid synthesis, which may in part explain its growth-inhibiting activity. CONCLUSION: IRF1 links endodermal differentiation to the expression of genes controlling antigen presentation and processing as well as to the specification of the metabolic profile characteristic of classical PDAC cells.


Asunto(s)
Regulación de la Expresión Génica , Neoplasias Pancreáticas , Humanos , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Interferones , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
4.
Eur Heart J ; 42(32): 3078-3090, 2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34252181

RESUMEN

AIMS: PCSK9 is secreted into the circulation, mainly by the liver, and interacts with low-density lipoprotein receptor (LDLR) homologous and non-homologous receptors, including CD36, thus favouring their intracellular degradation. As PCSK9 deficiency increases the expression of lipids and lipoprotein receptors, thus contributing to cellular lipid accumulation, we investigated whether this could affect heart metabolism and function. METHODS AND RESULTS: Wild-type (WT), Pcsk9 KO, Liver conditional Pcsk9 KO and Pcsk9/Ldlr double KO male mice were fed for 20 weeks with a standard fat diet and then exercise resistance, muscle strength, and heart characteristics were evaluated. Pcsk9 KO presented reduced running resistance coupled to echocardiographic abnormalities suggestive of heart failure with preserved ejection fraction (HFpEF). Heart mitochondrial activity, following maximal coupled and uncoupled respiration, was reduced in Pcsk9 KO mice compared to WT mice and was coupled to major changes in cardiac metabolism together with increased expression of LDLR and CD36 and with lipid accumulation. A similar phenotype was observed in Pcsk9/Ldlr DKO, thus excluding a contribution for LDLR to cardiac impairment observed in Pcsk9 KO mice. Heart function profiling of the liver selective Pcsk9 KO model further excluded the involvement of circulating PCSK9 in the development of HFpEF, pointing to a possible role locally produced PCSK9. Concordantly, carriers of the R46L loss-of-function variant for PCSK9 presented increased left ventricular mass but similar ejection fraction compared to matched control subjects. CONCLUSION: PCSK9 deficiency impacts cardiac lipid metabolism in an LDLR independent manner and contributes to the development of HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Proproteína Convertasa 9 , Animales , Insuficiencia Cardíaca/genética , Masculino , Ratones , Ratones Noqueados , Proproteína Convertasa 9/genética , Receptores de LDL/genética , Volumen Sistólico
5.
Glia ; 69(10): 2419-2428, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34139039

RESUMEN

Elovl5 elongates fatty acids with 18 carbon atoms and in cooperation with other enzymes guarantees the normal levels of very long-chain fatty acids, which are necessary for a proper membrane structure. Action potential conduction along myelinated axons depends on structural integrity of myelin, which is maintained by a correct amount of fatty acids and a proper interaction between fatty acids and myelin proteins. We hypothesized that in Elovl5-/- mice, the lack of elongation of Elovl5 substrates might cause alterations of myelin structure. The analysis of myelin ultrastructure showed an enlarged periodicity with reduced G-ratio across all axonal diameters. We hypothesized that the structural alteration of myelin might affect the conduction of action potentials. The sciatic nerve conduction velocity was significantly reduced without change in the amplitude of the nerve compound potential, suggesting a myelin defect without a concomitant axonal degeneration. Since Elovl5 is important in attaining normal amounts of polyunsaturated fatty acids, which are the principal component of myelin, we performed a lipidomic analysis of peripheral nerves of Elovl5-deficient mice. The results revealed an unbalance, with reduction of fatty acids longer than 18 carbon atoms relative to shorter ones. In addition, the ratio of saturated to unsaturated fatty acids was strongly increased. These findings point out the essential role of Elovl5 in the peripheral nervous system in supporting the normal structure of myelin, which is the key element for a proper conduction of electrical signals along myelinated nerves.


Asunto(s)
Axones , Vaina de Mielina , Potenciales de Acción/genética , Animales , Axones/fisiología , Elongasas de Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Ratones , Vaina de Mielina/metabolismo , Conducción Nerviosa/genética , Nervios Periféricos
6.
Apoptosis ; 26(5-6): 277-292, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811561

RESUMEN

Melanoma is an aggressive tumor with still poor therapy outcomes. δ-tocotrienol (δ-TT) is a vitamin E derivative displaying potent anti-cancer properties. Previously, we demonstrated that δ-TT triggers apoptosis in human melanoma cells. Here, we investigated whether it might also activate paraptosis, a non-canonical programmed cell death. In accordance with the main paraptotic features, δ-TT was shown to promote cytoplasmic vacuolization, associated with endoplasmic reticulum/mitochondrial dilation and protein synthesis, as well as MAPK activation in A375 and BLM cell lines. Moreover, treated cells exhibited a significant reduced expression of OXPHOS complex I and a marked decrease in oxygen consumption and mitochondrial membrane potential, culminating in decreased ATP synthesis and AMPK phosphorylation. This mitochondrial dysfunction resulted in ROS overproduction, found to be responsible for paraptosis induction. Additionally, δ-TT caused Ca2+ homeostasis disruption, with endoplasmic reticulum-derived ions accumulating in mitochondria and activating the paraptotic signaling. Interestingly, by using both IP3R and VDAC inhibitors, a close cause-effect relationship between mitochondrial Ca2+ overload and ROS generation was evidenced. Collectively, these results provide novel insights into δ-TT anti-melanoma activity, highlighting its ability to induce mitochondrial dysfunction-mediated paraptosis. δ-tocotrienol induces paraptotic cell death in human melanoma cells, causing endoplasmic reticulum dilation and mitochondrial swelling. These alterations induce an impairment of mitochondrial function, ROS production and calcium overload.


Asunto(s)
Antineoplásicos/farmacología , Calcio/metabolismo , Melanoma/metabolismo , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Muerte Celular Regulada/efectos de los fármacos , Vitamina E/análogos & derivados , Línea Celular Tumoral , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Humanos , Melanoma/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Dilatación Mitocondrial/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal/efectos de los fármacos , Vitamina E/farmacología
7.
Arch Biochem Biophys ; 712: 109040, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34555372

RESUMEN

BACKGROUND: Epigenetic modifiers, such as methyltransferases, play crucial roles in the regulation of many biological processes, including development, cancer and multiple physiopathological conditions. SUMMARY: The Su(Var)3-9, Enhancer-of-zeste and Trithorax (SET) and Myeloid, Nervy, and DEAF-1 (MYND) domain-containing (SMYD) protein family consists of five members in humans and mice (i.e. SMYD1, SMYD2, SMYD3, SMYD4 and SMYD5), which are known or predicted to have methyltransferase activity on histone and non-histone substrates. The abundance of information concerning SMYD2 and SMYD3 is of note, whereas the other members of the SMYD family have not been so thoroughly studied CONCLUSION: Here we review the literature regarding SMYD proteins published in the last five years, including basic molecular biology mechanistic studies using in vitro systems and animal models, as well as human studies with a more translational or clinical approach.


Asunto(s)
N-Metiltransferasa de Histona-Lisina/fisiología , Animales , Enfermedades Cardiovasculares/fisiopatología , Diferenciación Celular/fisiología , Corazón/fisiología , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Músculo Esquelético/fisiología , Mutación , Neoplasias/fisiopatología
8.
Glycoconj J ; 37(3): 293-306, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32266604

RESUMEN

The crucial role of ganglioside GM1 in the regulation of neural homeostasis has been assessed by several studies. Recently we shed new light on the molecular basis underlying GM1 effects demonstrating that GM1 oligosaccharide directly binds TrkA receptor and triggers MAPK pathway activation leading to neuronal differentiation and protection. Following its exogenous administration, proteomic analysis revealed an increased expression of proteins involved in several biochemical mechanisms, including mitochondrial bioenergetics. Based on these data, we investigated the possible effect of GM1 oligosaccharide administration on mitochondrial function. We show that wild-type Neuro2a cells exposed to GM1 oligosaccharide displayed an increased mitochondrial density and an enhanced mitochondrial activity together with reduced reactive oxygen species levels. Interestingly, using a Neuro2a model of mitochondrial dysfunction, we found an increased mitochondrial oxygen consumption rate as well as increased complex I and II activities upon GM1 oligosaccharide administration. Taken together, our data identify GM1 oligosaccharide as a mitochondrial regulator that by acting at the plasma membrane level triggers biochemical signaling pathway inducing mitochondriogenesis and increasing mitochondrial activity. Although further studies are necessary, the capability to enhance the function of impaired mitochondria points to the therapeutic potential of the GM1 oligosaccharide for the treatment of pathologies where these organelles are compromised, including Parkinson's disease.


Asunto(s)
Gangliósido G(M1) , Neuroblastoma , Gangliósido G(M1)/metabolismo , Humanos , Mitocondrias/metabolismo , Mitocondrias/patología , Neuroblastoma/metabolismo , Oligosacáridos/química , Proteómica
9.
Brain Behav Immun ; 89: 268-280, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32659316

RESUMEN

Trigeminal neuralgia is often an early symptom of multiple sclerosis (MS), and it generally does not correlate with the severity of the disease. Thus, whether it is triggered simply by demyelination in specific central nervous system areas is currently questioned. Our aims were to monitor the development of spontaneous trigeminal pain in an animal model of MS, and to analyze: i) glial cells, namely astrocytes and microglia in the central nervous system and satellite glial cells in the trigeminal ganglion, and ii) metabolic changes in the trigeminal system. The subcutaneous injection of recombinant MOG1-125 protein fragment to Dark Agouti male rats led to the development of relapsing-remitting EAE, with a first peak after 13 days, a remission stage from day 16 and a second peak from day 21. Interestingly, orofacial allodynia developed from day 1 post injection, i.e. well before the onset of EAE, and worsened over time, irrespective of the disease phase. Activation of glial cells both in the trigeminal ganglia and in the brainstem, with no signs of demyelination in the latter tissue, was observed along with metabolic alterations in the trigeminal ganglion. Our data show, for the first time, the spontaneous development of trigeminal sensitization before the onset of relapsing-remitting EAE in rats. Additionally, pain is maintained elevated during all stages of the disease, suggesting the existence of parallel mechanisms controlling motor symptoms and orofacial pain, likely involving glial cell activation and metabolic alterations which can contribute to trigger the sensitization of sensory neurons.


Asunto(s)
Esclerosis Múltiple , Animales , Dolor Facial , Masculino , Metaboloma , Neuroglía , Ratas , Ganglio del Trigémino
10.
EMBO Rep ; 19(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29507079

RESUMEN

Mitochondria are the energy-generating hubs of the cell. In spite of considerable advances, our understanding of the factors that regulate the molecular circuits that govern mitochondrial function remains incomplete. Using a genome-wide functional screen, we identify the poorly characterized protein Zinc finger CCCH-type containing 10 (Zc3h10) as regulator of mitochondrial physiology. We show that Zc3h10 is upregulated during physiological mitochondriogenesis as it occurs during the differentiation of myoblasts into myotubes. Zc3h10 overexpression boosts mitochondrial function and promotes myoblast differentiation, while the depletion of Zc3h10 results in impaired myoblast differentiation, mitochondrial dysfunction, reduced expression of electron transport chain (ETC) subunits, and blunted TCA cycle flux. Notably, we have identified a loss-of-function mutation of Zc3h10 in humans (Tyr105 to Cys105) that is associated with increased body mass index, fat mass, fasting glucose, and triglycerides. Isolated peripheral blood mononuclear cells from individuals homozygotic for Cys105 display reduced oxygen consumption rate, diminished expression of some ETC subunits, and decreased levels of some TCA cycle metabolites, which all together derive in mitochondrial dysfunction. Taken together, our study identifies Zc3h10 as a novel mitochondrial regulator.


Asunto(s)
Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Anciano , Animales , Proteínas Portadoras/genética , Diferenciación Celular , Línea Celular , Ciclo del Ácido Cítrico , Biología Computacional/métodos , Metabolismo Energético , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Silenciador del Gen , Humanos , Masculino , Ratones , Mitocondrias/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Mutación , Mioblastos/citología , Mioblastos/metabolismo , Proteoma , Proteómica/métodos
11.
J Neurochem ; 147(3): 291-309, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29804302

RESUMEN

In the last decades, lysosomes and mitochondria were considered distinct and physically separated organelles involved in different cellular functions. While lysosomes were thought to exclusively be the rubbish dump of the cell involved in the degradation of proteins and other cell compartments, mitochondria were considered solely involved in the oxidation of energy substrate to get ATP, together with other minor duties. Nowadays, our view of these organelles is profoundly changed since studies demonstrated that mitochondria and lysosome are mutually functional, maintaining proper cell homeostasis. Furthermore, the onset of neurodegenerative diseases (i.e., Parkinson's disease, Alzheimer's disease, lysosomal storage disorders, and amyotrophic lateral sclerosis) is tightly linked to mutations in mitochondrial and lysosomal regulators. In this context, mitochondrial dysfunction leads to lysosomal impairment and buildup of autophagy by-products, whereas lysosomal imperfections trigger functional and morphological mitochondrial defects. Here, we provide an updated overview covering recent findings about mitochondria and lysosomal interaction in physiology and pathophysiology, focusing the attention on the molecular mechanism that control their interdependence.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/patología , Lisosomas/patología , Mitocondrias/patología , Enfermedades Mitocondriales/patología , Enfermedades Neurodegenerativas/patología , Animales , Humanos
12.
Int J Mol Sci ; 19(4)2018 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-29662003

RESUMEN

Therapeutic approaches to metabolic syndrome (MetS) are numerous and may target lipoproteins, blood pressure or anthropometric indices. Peroxisome proliferator-activated receptors (PPARs) are involved in the metabolic regulation of lipid and lipoprotein levels, i.e., triglycerides (TGs), blood glucose, and abdominal adiposity. PPARs may be classified into the α, ß/δ and γ subtypes. The PPAR-α agonists, mainly fibrates (including newer molecules such as pemafibrate) and omega-3 fatty acids, are powerful TG-lowering agents. They mainly affect TG catabolism and, particularly with fibrates, raise the levels of high-density lipoprotein cholesterol (HDL-C). PPAR-γ agonists, mainly glitazones, show a smaller activity on TGs but are powerful glucose-lowering agents. Newer PPAR-α/δ agonists, e.g., elafibranor, have been designed to achieve single drugs with TG-lowering and HDL-C-raising effects, in addition to the insulin-sensitizing and antihyperglycemic effects of glitazones. They also hold promise for the treatment of non-alcoholic fatty liver disease (NAFLD) which is closely associated with the MetS. The PPAR system thus offers an important hope in the management of atherogenic dyslipidemias, although concerns regarding potential adverse events such as the rise of plasma creatinine, gallstone formation, drug-drug interactions (i.e., gemfibrozil) and myopathy should also be acknowledged.


Asunto(s)
Descubrimiento de Drogas , Hipoglucemiantes/farmacología , Hipolipemiantes/farmacología , Lípidos/sangre , Síndrome Metabólico/tratamiento farmacológico , Receptores Activados del Proliferador del Peroxisoma/agonistas , Animales , Benzoxazoles/química , Benzoxazoles/farmacología , Benzoxazoles/uso terapéutico , Butiratos/química , Butiratos/farmacología , Butiratos/uso terapéutico , Chalconas/química , Chalconas/farmacología , Chalconas/uso terapéutico , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/uso terapéutico , Hipolipemiantes/química , Hipolipemiantes/uso terapéutico , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Síndrome Metabólico/sangre , Síndrome Metabólico/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Propionatos/química , Propionatos/farmacología , Propionatos/uso terapéutico , Tiazolidinedionas/química , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéutico , Triglicéridos/sangre , Triglicéridos/metabolismo
13.
J Neurochem ; 142(3): 420-428, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28467654

RESUMEN

Neuroactive steroid levels are altered in several experimental models of peripheral neuropathy, and on this basis, they have been proposed as protective agents. For the first time, the levels of these molecules were assessed here in sterol regulatory element binding protein -1c knock-out male mice (i.e., an experimental model of peripheral neuropathy) and compared with observations in wild type animals. The levels of neuroactive steroids have been evaluated by liquid chromatography-tandem mass spectrometry in plasma and sciatic nerve at 2 and 10 months of age and these analyses were implemented analyzing the gene expression of crucial steroidogenic enzymes in sciatic nerve. Data obtained at 2 months of age showed high levels of pregnenolone in sciatic nerve, associated with low levels of its first metabolite, progesterone, and further metabolites (i.e., 5α-pregnane-3,20-dione and 5α-pregnan-3ß-ol-20-one). High levels of testosterone and 17ß-estradiol were also observed. At 10 months of age, the neuroactive steroid profile showed some differences. Indeed, low levels of pregnenolone and high levels of 5α-pregnan-3α-ol-20-one and 5α-pregnan-3ß-ol-20-one were observed. The analysis of the gene expression of steroidogenic enzymes considered here generally followed these changes. Interestingly, the levels of pregnenolone and progesterone were unmodified in plasma suggesting a specific effect of sterol regulatory element binding protein-1c on neurosteroidogenesis. Because this peripheral neuropathy is due to altered fatty acid biosynthesis, data reported here support the belief that the cross-talk between this biosynthetic pathway and neuroactive steroids may represent a possible therapeutic strategy for peripheral neuropathy.


Asunto(s)
Nervio Ciático/metabolismo , Esteroides/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Animales , Cromatografía Liquida/métodos , Diabetes Mellitus Experimental/metabolismo , Ratones Noqueados , Progesterona/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/deficiencia , Testosterona/metabolismo
14.
Biochim Biophys Acta ; 1851(1): 51-60, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25150974

RESUMEN

Lipids in the nervous system accomplish a great number of key functions, from synaptogenesis to impulse conduction, and more. Most of the lipids of the nervous system are localized in myelin sheaths. It has long been known that myelin structure and brain homeostasis rely on specific lipid-protein interactions and on specific cell-to-cell signaling. In more recent years, the growing advances in large-scale technologies and genetically modified animal models have provided valuable insights into the role of lipids in the nervous system. Key findings recently emerged in these areas are here summarized. In addition, we briefly discuss how this new knowledge can open novel approaches for the treatment of diseases associated with alteration of lipid metabolism/homeostasis in the nervous system. This article is part of a Special Issue entitled Linking transcription to physiology in lipidomics.


Asunto(s)
Metabolismo de los Lípidos/fisiología , Sistema Nervioso/metabolismo , Sistema Nervioso/fisiopatología , Animales , Humanos
15.
Curr Genomics ; 15(6): 436-56, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25646072

RESUMEN

Energy metabolism and mitochondrial function hold a core position in cellular homeostasis. Oxidative metabolism is regulated at multiple levels, ranging from gene transcription to allosteric modulation. To accomplish the fine tuning of these multiple regulatory circuits, the nuclear and mitochondrial compartments are tightly and reciprocally controlled. The fact that nuclear encoded factors, PPARγ coactivator 1α and mitochondrial transcription factor A, play pivotal roles in the regulation of oxidative metabolism and mitochondrial biogenesis is paradigmatic of this crosstalk. Here we provide an updated survey of the genetic and epigenetic mechanisms involved in the control of energy metabolism and mitochondrial function. Chromatin dynamics highly depends on post-translational modifications occurring at specific amino acids in histone proteins and other factors associated to nuclear DNA. In addition to the well characterized enzymes responsible for histone methylation/demethylation and acetylation/deacetylation, other factors have gone on the "metabolic stage". This is the case of the new class of α-ketoglutarate-regulated demethylases (Jumonji C domain containing demethylases) and of the NAD+-dependent deacetylases, also known as sirtuins. Moreover, unexpected features of the machineries involved in mitochondrial DNA (mtDNA) replication and transcription, mitochondrial RNA processing and maturation have recently emerged. Mutations or defects of any component of these machineries profoundly affect mitochondrial activity and oxidative metabolism. Finally, recent evidences support the importance of mtDNA packaging in replication and transcription. These observations, along with the discovery that non-classical CpG islands present in mtDNA undergo methylation, indicate that epigenetics also plays a role in the regulation of the mitochondrial genome function.

16.
Andrology ; 12(3): 674-681, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37621185

RESUMEN

Despite its efficacy for treating androgenetic alopecia, finasteride, an inhibitor of 5α-reductase (i.e., the enzyme converting testosterone, T, into dihydrotestosterone, DHT), is associated with several side effects including sexual dysfunction (e.g., erectile dysfunction). These side effects may persist after drug suspension, inducing the so-called post-finasteride syndrome (PFS). The effects of subchronic treatment with finasteride (i.e., 20 days) and its withdrawal (i.e., 1 month) in rat corpus cavernosum have been explored here. Data obtained show that the treatment was able to decrease the levels of the enzyme 5α-reductase type II in the rat corpus cavernosum with increased T and decreased DHT levels. This local change in T metabolism was linked to mechanisms associated with erectile dysfunction. Indeed, by targeted metabolomics, we reported a decrease in the nitric oxide synthase (NOS) activity, measured by the citrulline/arginine ratio and confirmed by the decrease in NO2 levels, and a decrease in ornithine transcarbamylase (OTC) activity, measured by citrulline/ornithine ratio. Interestingly, the T levels are negatively correlated with NOS activity, while those of DHT are positively correlated with OTC activity. Finasteride treatment also induced alterations in the levels of other molecules involved in the control of penile erection, such as norepinephrine and its metabolite, epinephrine. Indeed, plasma levels of norepinephrine and epinephrine were significantly increased and decreased, respectively, suggesting an impairment of these mediators. Interestingly, these modifications were restored by suspension of the drug. Altogether, the results reported here indicate that finasteride treatment, but not its withdrawal, affects T metabolism in the rat corpus cavernosum, and this alteration was linked to mechanisms associated with erectile dysfunction. Data here reported could also suggest that the PFS sexual side effects are more related to dysfunction in a sexual central control rather than peripheral compromised condition.


Asunto(s)
Disfunción Eréctil , Finasterida , Masculino , Humanos , Ratas , Animales , Finasterida/efectos adversos , Disfunción Eréctil/tratamiento farmacológico , Citrulina , Dihidrotestosterona , Epinefrina , Norepinefrina , Inhibidores de 5-alfa-Reductasa/efectos adversos
17.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496560

RESUMEN

We previously reported that in the absence of Prostaglandin D2 synthase (L-PGDS) peripheral nerves are hypomyelinated in development and that with aging they present aberrant myelin sheaths. We now demonstrate that L-PGDS expressed in Schwann cells is part of a coordinated program aiming at preserving myelin integrity. In vivo and in vitro lipidomic, metabolomic and transcriptomic analyses confirmed that myelin lipids composition, Schwann cells energetic metabolism and key enzymes controlling these processes are altered in the absence of L-PGDS. Moreover, Schwann cells undergo a metabolic rewiring and turn to acetate as the main energetic source. Further, they produce ketone bodies to ensure glial cell and neuronal survival. Importantly, we demonstrate that all these changes correlate with morphological myelin alterations and describe the first physiological pathway implicated in preserving PNS myelin. Collectively, we posit that myelin lipids serve as a reservoir to provide ketone bodies, which together with acetate represent the adaptive substrates Schwann cells can rely on to sustain the axo-glial unit and preserve the integrity of the PNS.

18.
Neuropsychopharmacology ; 48(10): 1475-1483, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37380799

RESUMEN

Brain metabolism is a fundamental process involved in the proper development of the central nervous system and in the maintenance of the main higher functions in humans. As consequence, energy metabolism imbalance has been commonly associated to several mental disorders, including depression. Here, by employing a metabolomic approach, we aimed to establish if differences in energy metabolite concentration may underlie the vulnerability and resilience in an animal model of mood disorder named chronic mild stress (CMS) paradigm. In addition, we have investigated the possibility that modulation of metabolite concentration may represent a pharmacological target for depression by testing whether repeated treatment with the antidepressant venlafaxine may normalize the pathological phenotype by acting at metabolic level. The analyses were conducted in the ventral hippocampus (vHip) for its key role in the modulation of anhedonia, a core symptom of patients affected by depression. Interestingly, we showed that a shift from glycolysis to beta oxidation seems to be responsible for the vulnerability to chronic stress and that vHip metabolism contributes to the ability of the antidepressant venlafaxine to normalize the pathological phenotype, as shown by the reversal of the changes observed in specific metabolites. These findings may provide novel perspectives on metabolic changes that could serve as diagnostic markers and preventive strategies for the early detection and treatment of depression as well as for the identification of potential drug targets.


Asunto(s)
Antidepresivos , Glucosa , Ratas , Animales , Humanos , Clorhidrato de Venlafaxina/farmacología , Ratas Wistar , Glucosa/metabolismo , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Anhedonia/fisiología , Hipocampo , Estrés Psicológico/metabolismo , Depresión/tratamiento farmacológico , Depresión/metabolismo , Modelos Animales de Enfermedad
19.
Front Cell Dev Biol ; 11: 1071037, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36994106

RESUMEN

Rewiring of mitochondrial metabolism has been described in different cancers as a key step for their progression. Calcium (Ca2+) signaling regulates mitochondrial function and is known to be altered in several malignancies, including triple negative breast cancer (TNBC). However, whether and how the alterations in Ca2+ signaling contribute to metabolic changes in TNBC has not been elucidated. Here, we found that TNBC cells display frequent, spontaneous inositol 1,4,5-trisphosphate (IP3)-dependent Ca2+ oscillations, which are sensed by mitochondria. By combining genetic, pharmacologic and metabolomics approaches, we associated this pathway with the regulation of fatty acid (FA) metabolism. Moreover, we demonstrated that these signaling routes promote TNBC cell migration in vitro, suggesting they might be explored to identify potential therapeutic targets.

20.
EMBO Mol Med ; 15(4): e17033, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36647689

RESUMEN

Gyrate atrophy of choroid and retina (GACR) is a chorioretinal degeneration caused by pathogenic variants in the gene encoding ornithine aminotransferase (OAT), an enzyme mainly expressed in liver. Affected patients have increased ornithine concentrations in blood and other body fluids and develop progressive constriction of vision fields leading to blindness. Current therapies are unsatisfactory and better treatments are highly needed. In two mouse models of OAT deficiency that recapitulates biochemical and retinal changes of GACR, we investigated the efficacy of an intravenously injected serotype 8 adeno-associated (AAV8) vector expressing OAT under the control of a hepatocyte-specific promoter. Following injections, OAT-deficient mice showed reductions of ornithine concentrations in blood and eye cups compared with control mice injected with a vector expressing green fluorescent protein. AAV-injected mice showed improved electroretinogram response and partial restoration of retinal structure up to one-year post-injection. In summary, hepatic OAT expression by AAV8 vector was effective at correction of hyperornithinemia and improved function and structure of the retina. In conclusion, this study provides proof-of-concept of efficacy of liver-directed AAV-mediated gene therapy of GACR.


Asunto(s)
Atrofia Girata , Degeneración Retiniana , Animales , Ratones , Atrofia Girata/genética , Atrofia Girata/patología , Ornitina-Oxo-Ácido Transaminasa/genética , Ornitina-Oxo-Ácido Transaminasa/metabolismo , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Ornitina/genética , Ornitina/metabolismo , Terapia Genética , Hígado/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA