Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Hum Mol Genet ; 25(22): 5017-5026, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28159992

RESUMEN

Genetic diseases associated with defects in primary cilia are classified as ciliopathies. Pancreatic lesions and ductal cysts are found in patients with ciliopathic polycystic kidney diseases suggesting a close connection between pancreatic defects and primary cilia. Here we investigate the role of two genes whose deletion is known to cause primary cilium defects, namely Hnf6 and Lkb1, in pancreatic ductal homeostasis. We find that mice with postnatal duct-specific deletion of Hnf6 or Lkb1 show duct dilations. Cells lining dilated ducts present shorter cilia with swollen tips, suggesting defective intraciliary transport. This is associated with signs of chronic pancreatitis, namely acinar-to-ductal metaplasia, acinar proliferation and apoptosis, presence of inflammatory infiltrates, fibrosis and lipomatosis. Our data reveal a tight association between ductal ciliary defects and pancreatitis with perturbed acinar homeostasis and differentiation. Such injuries can account for the increased risk to develop pancreatic cancer in Peutz-Jeghers patients who carry LKB1 loss-of-function mutations.


Asunto(s)
Cilios/patología , Factor Nuclear 6 del Hepatocito/metabolismo , Pancreatitis Crónica/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Animales , Apoptosis/fisiología , Diferenciación Celular , Cilios/genética , Células Epiteliales/patología , Factor Nuclear 6 del Hepatocito/genética , Lipomatosis/genética , Lipomatosis/metabolismo , Metaplasia/genética , Metaplasia/metabolismo , Ratones , Páncreas/patología , Conductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/genética , Pancreatitis Crónica/genética , Proteínas Serina-Treonina Quinasas/genética
2.
Anal Biochem ; 500: 60-2, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26896683

RESUMEN

Extracting RNA from pancreatic tissue is notoriously challenging because of the organ's high RNase content. Standard methods using TriPure or TRIzol classically yield RNA of sufficient quality for routine gene expression analysis but not for microarray or deep sequencing analysis. Here we developed a simple method to extract high-quality RNA from mouse pancreas. Our method uses an RNase inhibitor and combines different protocols using guanidium thiocyanate-phenol extraction. It enables reproducible isolation of RNA with an RNA integrity number around 9.


Asunto(s)
Páncreas/química , ARN Neoplásico/aislamiento & purificación , Animales , Humanos , Ratones
3.
Gut ; 64(11): 1790-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25336113

RESUMEN

OBJECTIVE: The transcription factor SOX9 was recently shown to stimulate ductal gene expression in pancreatic acinar-to-ductal metaplasia and to accelerate development of premalignant lesions preceding pancreatic ductal adenocarcinoma (PDAC). Here, we investigate how SOX9 operates in pancreatic tumourigenesis. DESIGN: We analysed genomic and transcriptomic data from surgically resected PDAC and extended the expression analysis to xenografts from PDAC samples and to PDAC cell lines. SOX9 expression was manipulated in human cell lines and mouse models developing PDAC. RESULTS: We found genetic aberrations in the SOX9 gene in about 15% of patient tumours. Most PDAC samples strongly express SOX9 protein, and SOX9 levels are higher in classical PDAC. This tumour subtype is associated with better patient outcome, and cell lines of this subtype respond to therapy targeting epidermal growth factor receptor (EGFR/ERBB1) signalling, a pathway essential for pancreatic tumourigenesis. In human PDAC, high expression of SOX9 correlates with expression of genes belonging to the ERBB pathway. In particular, ERBB2 expression in PDAC cell lines is stimulated by SOX9. Inactivating Sox9 expression in mice confirmed its role in PDAC initiation; it demonstrated that Sox9 stimulates expression of several members of the ERBB pathway and is required for ERBB signalling activity. CONCLUSIONS: By integrating data from patient samples and mouse models, we found that SOX9 regulates the ERBB pathway throughout pancreatic tumourigenesis. Our work opens perspectives for therapy targeting tumourigenic mechanisms.


Asunto(s)
Adenocarcinoma/etiología , Carcinoma Ductal Pancreático/etiología , Receptores ErbB/fisiología , Neoplasias Pancreáticas/etiología , Factor de Transcripción SOX9/fisiología , Adenocarcinoma/genética , Animales , Carcinoma Ductal Pancreático/genética , Transformación Celular Neoplásica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Neoplasias Pancreáticas/genética , Factor de Transcripción SOX9/genética , Transducción de Señal
4.
Gastroenterology ; 145(3): 668-78.e3, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23684747

RESUMEN

BACKGROUND & AIMS: Diseases of the exocrine pancreas are often associated with perturbed differentiation of acinar cells. MicroRNAs (miRNAs) regulate pancreas development, yet little is known about their contribution to acinar cell differentiation. We aimed to identify miRNAs that promote and control the maintenance of acinar differentiation. METHODS: We studied mice with pancreas- or acinar-specific inactivation of Dicer (Foxa3-Cre/Dicer(loxP/-) mice), combined (or not) with inactivation of hepatocyte nuclear factor (HNF) 6 (Foxa3-Cre/Dicer(loxP/-)/Hnf6-/- mice). The role of specific miRNAs in acinar differentiation was investigated by transfecting cultured cells with miRNA mimics or inhibitors. Pancreatitis-induced metaplasia was investigated in mice after administration of cerulein. RESULTS: Inhibition of miRNA synthesis in acini by inactivation of Dicer and pancreatitis-induced metaplasia were associated with repression of acinar differentiation and with induction of HNF6 and hepatic genes. The phenotype of Dicer-deficient acini depends on the induction of HNF6; overexpression of this factor in developing acinar cells is sufficient to repress acinar differentiation and to induce hepatic genes. Let-7b and miR-495 repress HNF6 and are expressed in developing acini. Their expression is inhibited in Dicer-deficient acini, as well as in pancreatitis-induced metaplasia. In addition, inhibiting let-7b and miR-495 in acinar cells results in similar effects to those found in Dicer-deficient acini and metaplastic cells, namely induction of HNF6 and hepatic genes and repression of acinar differentiation. CONCLUSIONS: Let-7b, miR-495, and their targets constitute a gene network that is required to establish and maintain pancreatic acinar cell differentiation. Additional studies of this network will increase our understanding of pancreatic diseases.


Asunto(s)
Células Acinares/citología , Diferenciación Celular/genética , Factor Nuclear 6 del Hepatocito/metabolismo , MicroARNs/metabolismo , Páncreas Exocrino/citología , Células Acinares/metabolismo , Animales , Biomarcadores/metabolismo , Ceruletida , Citometría de Flujo , Regulación de la Expresión Génica , Inmunohistoquímica , Metaplasia , Ratones , Ratones Noqueados , Páncreas Exocrino/metabolismo , Páncreas Exocrino/patología , Pancreatitis/inducido químicamente , Pancreatitis/genética , Pancreatitis/metabolismo , Pancreatitis/patología , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA