Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(3): 684-701.e14, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33058756

RESUMEN

Positive selection in Europeans at the 2q21.3 locus harboring the lactase gene has been attributed to selection for the ability of adults to digest milk to survive famine in ancient times. However, the 2q21.3 locus is also associated with obesity and type 2 diabetes in humans, raising the possibility that additional genetic elements in the locus may have contributed to evolutionary adaptation to famine by promoting energy storage, but which now confer susceptibility to metabolic diseases. We show here that the miR-128-1 microRNA, located at the center of the positively selected locus, represents a crucial metabolic regulator in mammals. Antisense targeting and genetic ablation of miR-128-1 in mouse metabolic disease models result in increased energy expenditure and amelioration of high-fat-diet-induced obesity and markedly improved glucose tolerance. A thrifty phenotype connected to miR-128-1-dependent energy storage may link ancient adaptation to famine and modern metabolic maladaptation associated with nutritional overabundance.


Asunto(s)
Enfermedades Metabólicas/genética , MicroARNs/genética , Adipocitos Marrones/patología , Adiposidad , Alelos , Animales , Diferenciación Celular , Línea Celular , Células Cultivadas , Dieta Alta en Grasa , Metabolismo Energético , Epigénesis Genética , Sitios Genéticos , Glucosa/metabolismo , Homeostasis , Humanos , Hipertrofia , Resistencia a la Insulina , Leptina/deficiencia , Leptina/metabolismo , Masculino , Mamíferos/genética , Ratones Endogámicos C57BL , Ratones Obesos , MicroARNs/metabolismo , Obesidad/genética , Oligonucleótidos/metabolismo , Especificidad de la Especie
2.
Nat Immunol ; 16(11): 1142-52, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26414765

RESUMEN

Mitochondria need to be juxtaposed to phagosomes for the synergistic production of ample reactive oxygen species (ROS) in phagocytes to kill pathogens. However, how phagosomes transmit signals to recruit mitochondria has remained unclear. Here we found that the kinases Mst1 and Mst2 functioned to control ROS production by regulating mitochondrial trafficking and mitochondrion-phagosome juxtaposition. Mst1 and Mst2 activated the GTPase Rac to promote Toll-like receptor (TLR)-triggered assembly of the TRAF6-ECSIT complex that is required for the recruitment of mitochondria to phagosomes. Inactive forms of Rac, including the human Rac2(D57N) mutant, disrupted the TRAF6-ECSIT complex by sequestering TRAF6 and substantially diminished ROS production and enhanced susceptibility to bacterial infection. Our findings demonstrate that the TLR-Mst1-Mst2-Rac signaling axis is critical for effective phagosome-mitochondrion function and bactericidal activity.


Asunto(s)
Fagocitos/inmunología , Fagocitos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Infecciones Bacterianas/etiología , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo , Actividad Bactericida de la Sangre/inmunología , Línea Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antígenos de Histocompatibilidad Menor , Mitocondrias/inmunología , Mitocondrias/metabolismo , Mitocondrias/microbiología , Fagocitos/microbiología , Fagosomas/inmunología , Fagosomas/metabolismo , Fagosomas/microbiología , Proteína Quinasa C-alfa/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , Sepsis/etiología , Sepsis/inmunología , Sepsis/metabolismo , Serina-Treonina Quinasa 3 , Transducción de Señal , Factor 6 Asociado a Receptor de TNF , Receptores Toll-Like/metabolismo , Ubiquitinación , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Inhibidor beta de Disociación del Nucleótido Guanina rho/metabolismo
3.
Cell ; 144(5): 782-95, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21376238

RESUMEN

During development and regeneration, proliferation of tissue-specific stem cells is tightly controlled to produce organs of a predetermined size. The molecular determinants of this process remain poorly understood. Here, we investigate the function of Yap1, the transcriptional effector of the Hippo signaling pathway, in skin biology. Using gain- and loss-of-function studies, we show that Yap1 is a critical modulator of epidermal stem cell proliferation and tissue expansion. Yap1 mediates this effect through interaction with TEAD transcription factors. Additionally, our studies reveal that α-catenin, a molecule previously implicated in tumor suppression and cell density sensing in the skin, is an upstream negative regulator of Yap1. α-catenin controls Yap1 activity and phosphorylation by modulating its interaction with 14-3-3 and the PP2A phosphatase. Together, these data identify Yap1 as a determinant of the proliferative capacity of epidermal stem cells and as an important effector of a "crowd control" molecular circuitry in mammalian skin.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proliferación Celular , Células Epidérmicas , Fosfoproteínas/metabolismo , alfa Catenina/metabolismo , Proteínas 14-3-3/metabolismo , Animales , Proteínas de Ciclo Celular , Línea Celular , Epidermis/metabolismo , Ratones , Proteínas Señalizadoras YAP
4.
Genes Dev ; 27(3): 301-12, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23388827

RESUMEN

Lack of IGF2 in mice results in diminished embryonic growth due to diminished cell proliferation. Here we show that mouse embryonic fibroblasts lacking the RNA-binding protein IMP1 (IGF2 mRNA-binding protein 1) have defective splicing and translation of IGF2 mRNAs, markedly reduced IGF2 polypeptide production, and diminished proliferation. The proliferation of the IMP1-null fibroblasts can be restored to wild-type levels by IGF2 in vitro or by re-expression of IMP1, which corrects the defects in IGF2 RNA splicing and translation. The ability of IMP1 to correct these defects is dependent on IMP1 phosphorylation at Ser181, which is catalyzed cotranslationally by mTOR complex 2 (mTORC2). Phosphorylation strongly enhances IMP1 binding to the IGF2-leader 3 5' untranslated region, which is absolutely required to enable IGF2-leader 3 mRNA translational initiation by internal ribosomal entry. These findings uncover a new mechanism by which mTOR regulates organismal growth by promoting IGF2 production in the mouse embryo through mTORC2-catalyzed cotranslational IMP1/IMP3 phosphorylation. Inasmuch as TORC2 is activated by association with ribosomes, the present results indicate that mTORC2-catalyzed cotranslational protein phosphorylation is a core function of this complex.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Unión al ARN/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regiones no Traducidas 5'/genética , Animales , Línea Celular , Proliferación Celular , Fibroblastos/citología , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Complejos Multiproteicos/genética , Fosforilación , Unión Proteica , Empalme del ARN , Proteínas de Unión al ARN/genética , Reticulocitos/metabolismo , Serina-Treonina Quinasas TOR/genética
5.
J Biol Chem ; 294(31): 11944-11951, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31209109

RESUMEN

Insulin-like growth factor 2 mRNA-binding proteins 1-3 (IGF2BP1-3, also known as IMP1-3) contribute to the regulation of RNAs in a transcriptome-specific context. Global deletion of the mRNA-binding protein insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2 or IMP2) in mice causes resistance to obesity and fatty liver induced by a high-fat diet (HFD), whereas liver-specific IMP2 overexpression results in steatosis. To better understand the role of IMP2 in hepatic triglyceride metabolism, here we crossed mice expressing albumin-Cre with mice bearing a floxed Imp2 gene to generate hepatocyte-specific IMP2 knockout (LIMP2 KO) mice. Unexpectedly, the livers of LIMP2 KO mice fed an HFD accumulated more triglyceride. Although hepatocyte-specific IMP2 deletion did not alter lipogenic gene expression, it substantially decreased the levels of the IMP2 client mRNAs encoding carnitine palmitoyltransferase 1A (CPT1A) and peroxisome proliferator-activated receptor α (PPARα). This decrease was associated with their more rapid turnover and accompanied by significantly diminished rates of palmitate oxidation by isolated hepatocytes and liver mitochondria. HFD-fed control and LIMP2 KO mice maintained a similar glucose tolerance and insulin sensitivity up to 6 months; however, by 6 months, blood glucose and serum triglycerides in LIMP2 KO mice were modestly elevated but without evidence of liver damage. In conclusion, hepatocyte-specific IMP2 deficiency promotes modest diet-induced fatty liver by impairing fatty acid oxidation through increased degradation of the IMP2 client mRNAs PPARα and CPT1A This finding indicates that the previously observed marked protection against fatty liver conferred by global IMP2 deficiency in mice is entirely due to their reduced adiposity.


Asunto(s)
Ácidos Grasos/metabolismo , Hígado/metabolismo , Proteínas de Unión al ARN/genética , Triglicéridos/metabolismo , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular , Dieta Alta en Grasa , Prueba de Tolerancia a la Glucosa , Hipertrigliceridemia/etiología , Peroxidación de Lípido , Masculino , Ratones , Ratones Noqueados , PPAR alfa/genética , PPAR alfa/metabolismo , Palmitatos/metabolismo , Proteínas de Unión al ARN/metabolismo , Triglicéridos/sangre
6.
Physiol Rev ; 92(2): 689-737, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22535895

RESUMEN

The mammalian stress-activated families of mitogen-activated protein kinases (MAPKs) were first elucidated in 1994, and by 2001, substantial progress had been made in identifying the architecture of the pathways upstream of these kinases as well as in cataloguing candidate substrates. This information remains largely sound. Nevertheless, an informed understanding of the physiological and pathophysiological roles of these kinases remained to be accomplished. In the past decade, there has been an explosion of new work using RNAi in cells, as well as transgenic, knockout and conditional knockout technology in mice that has provided valuable insight into the functions of stress-activated MAPK pathways. These findings have important implications in our understanding of organ development, innate and acquired immunity, and diseases such as atherosclerosis, tumorigenesis, and type 2 diabetes. These new developments bring us within striking distance of the development and validation of novel treatment strategies. Herein we first summarize the molecular components of the mammalian stress-regulated MAPK pathways and their regulation as described thus far. We then review some of the in vivo functions of these pathways.


Asunto(s)
Inflamación/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Estrés Fisiológico , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Aterosclerosis/metabolismo , Transformación Celular Neoplásica/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Genes Dev ; 25(11): 1159-72, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21576258

RESUMEN

Variants in the IMP2 (insulin-like growth factor 2 [IGF2] mRNA-binding protein 2) gene are implicated in susceptibility to type 2 diabetes. We describe the ability of mammalian target of rapamycin (mTOR) to regulate the cap-independent translation of IGF2 mRNA through phosphorylation of IMP2, an oncofetal RNA-binding protein. IMP2 is doubly phosphorylated in a rapamycin-inhibitable, amino acid-dependent manner in cells and by mTOR in vitro. Double phosphorylation promotes IMP2 binding to the IGF2 leader 3 mRNA 5' untranslated region, and the translational initiation of this mRNA through eIF-4E- and 5' cap-independent internal ribosomal entry. Unexpectedly, the interaction of IMP2 with mTOR complex 1 occurs through mTOR itself rather than through raptor. Whereas depletion of mTOR strongly inhibits IMP2 phosphorylation in cells, comparable depletion of raptor has no effect; moreover, the ability of mTOR to phosphorylate IMP2 in vitro is unaffected by the elimination of raptor. Dual phosphorylation of IMP2 at the mTOR sites is evident in the mouse embryo, likely coupling nutrient sufficiency to IGF2 expression and fetal growth. Doubly phosphorylated IMP2 is also widely expressed in adult tissues, including islets of Langerhans.


Asunto(s)
Regulación de la Expresión Génica , Factor II del Crecimiento Similar a la Insulina/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Regiones no Traducidas 5' , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antibacterianos/farmacología , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Ratones , Mutación , Fosforilación , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteína Reguladora Asociada a mTOR , Transducción de Señal , Sirolimus/farmacología
8.
Biochemistry ; 55(39): 5507-5519, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27618557

RESUMEN

The MST1 and MST2 protein kinases comprise the GCK-II subfamily of protein kinases. In addition to their amino-terminal kinase catalytic domain, related to that of the Saccharomyces cerevisiae protein kinase Ste20, their most characteristic feature is the presence near the carboxy terminus of a unique helical structure called a SARAH domain; this segment allows MST1/MST2 to homodimerize and to heterodimerize with the other polypeptides that contain SARAH domains, the noncatalytic polypeptides RASSF1-6 and Sav1/WW45. Early studies emphasized the potent ability of MST1/MST2 to induce apoptosis upon being overexpressed, as well as the conversion of the endogenous MST1/MST2 polypeptides to constitutively active, caspase-cleaved catalytic fragments during apoptosis initiated by any stimulus. Later, the cleaved, constitutively active form of MST1 was identified in nonapoptotic, quiescent adult hepatocytes as well as in cells undergoing terminal differentiation, where its presence is necessary to maintain those cellular states. The physiologic regulation of full length MST1/MST2 is controlled by the availability of its noncatalytic SARAH domain partners. Interaction with Sav1/WW45 recruits MST1/MST2 into a tumor suppressor pathway, wherein it phosphorylates and activates the Sav1-bound protein kinases Lats1/Lats2, potent inhibitors of the Yap1 and TAZ oncogenic transcriptional regulators. A constitutive interaction with the Rap1-GTP binding protein RASSF5B (Nore1B/RAPL) in T cells recruits MST1 (especially) and MST2 as an effector of Rap1's control of T cell adhesion and migration, a program crucial to immune surveillance and response; loss of function mutation in human MST1 results in profound immunodeficiency. MST1 and MST2 are also regulated by other protein kinases, positively by TAO1 and negatively by Par1, SIK2/3, Akt, and cRaf1. The growing list of candidate MST1/MST2 substrates suggests that the full range of MST1/MST2's physiologic programs and contributions to pathophysiology remains to be elucidated.


Asunto(s)
Proteínas Quinasas/metabolismo , Animales , Apoptosis , Catálisis , Activación Enzimática , Humanos , Hígado/enzimología , Mitosis , Fosforilación , Conformación Proteica , Proteínas Quinasas/química , Especies Reactivas de Oxígeno/metabolismo , Especificidad por Sustrato , Tirosina/metabolismo
9.
J Biol Chem ; 289(5): 2658-74, 2014 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-24337580

RESUMEN

Activation of mammalian target of rapamycin complex 1 (mTORC1) by amino acids is mediated in part by the Rag GTPases, which bind the raptor subunit of mTORC1 in an amino acid-stimulated manner and promote mTORC1 interaction with Rheb-GTP, the immediate activator. Here we examine whether the ability of amino acids to regulate mTORC1 binding to Rag and mTORC1 activation is due to the regulation of Rag guanyl nucleotide charging. Rag heterodimers in vitro exhibit a very rapid, spontaneous exchange of guanyl nucleotides and an inability to hydrolyze GTP. Mutation of the Rag P-loop corresponding to Ras(Ser-17) abolishes guanyl nucleotide binding. Such a mutation in RagA or RagB inhibits, whereas in RagC or RagD it enhances, Rag heterodimer binding to mTORC1. The binding of wild-type and mutant Rag heterodimers to mTORC1 in vitro parallels that seen with transient expression, but binding to mTORC1 in vitro is entirely independent of Rag guanyl nucleotide charging. HeLa cells stably overexpressing wild-type or P-loop mutant RagC exhibit unaltered amino acid regulation of mTORC1. Despite amino acid-independent raptor binding to Rag, mTORC1 is inhibited by amino acid withdrawal as in parental cells. Rag heterodimers extracted from (32)P-labeled whole cells, or just from the pool associated with the lysosomal membrane, exhibit constitutive [(32)P]GTP charging that is unaltered by amino acid withdrawal. Thus, amino acids promote mTORC1 activation without altering Rag GTP charging. Raptor binding to Rag, although necessary, is not sufficient for mTORC1 activation. Additional amino acid-dependent steps couple Rag-mTORC1 to Rheb-GTP.


Asunto(s)
Aminoácidos/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dimerización , Activación Enzimática/fisiología , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Células HEK293 , Células HeLa , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Proteínas de Unión al GTP Monoméricas/química , Proteínas de Unión al GTP Monoméricas/genética , Unión Proteica/fisiología , Proteína Reguladora Asociada a mTOR , Transducción de Señal/fisiología , Tritio , Homóloga LST8 de la Proteína Asociada al mTOR
10.
EMBO J ; 30(13): 2634-47, 2011 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-21642957

RESUMEN

The NIMA-family kinases Nek9/Nercc1, Nek6 and Nek7 form a signalling module required for mitotic spindle assembly. Nek9, the upstream kinase, is activated during prophase at centrosomes although the details of this have remained elusive. We now identify Plk1 as Nek9 direct activator and propose a two-step activation mechanism that involves Nek9 sequential phosphorylation by CDK1 and Plk1. Furthermore, we show that Plk1 controls prophase centrosome separation through the activation of Nek9 and ultimately the phosphorylation of the mitotic kinesin Eg5 at Ser1033, a Nek6/7 site that together with the CDK1 site Thr926 we establish contributes to the accumulation of Eg5 at centrosomes and is necessary for subsequent centrosome separation and timely mitosis. Our results provide a basis to understand signalling downstream of Plk1 and shed light on the role of Eg5, Plk1 and the NIMA-family kinases in the control of centrosome separation and normal mitotic progression.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Centrosoma/metabolismo , Cinesinas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Centrosoma/efectos de los fármacos , Centrosoma/fisiología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Activación Enzimática/fisiología , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Cinesinas/antagonistas & inhibidores , Cinesinas/genética , Cinesinas/metabolismo , Mitosis/efectos de los fármacos , Mitosis/genética , Mitosis/fisiología , Quinasas Relacionadas con NIMA , Fosforilación/efectos de los fármacos , Fosforilación/genética , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Interferente Pequeño/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Transfección , Quinasa Tipo Polo 1
11.
Bioessays ; 35(5): 430-5, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23450633

RESUMEN

The Hippo pathway, a cascade of protein kinases that inhibits the oncogenic transcriptional coactivators YAP and TAZ, was discovered in Drosophila as a major determinant of organ size in development. Known modes of regulation involve surface proteins that mediate cell-cell contact or determine epithelial cell polarity which, in a tissue-specific manner, use intracellular complexes containing FERM domain and actin-binding proteins to modulate the kinase activities or directly sequester YAP. Unexpectedly, recent work demonstrates that GPCRs, especially those signaling through Galpha12/13 such as the protease activated receptor PAR1, cause potent YAP dephosphorylation and activation. This response requires active RhoA GTPase and increased assembly of filamentous (F-)actin. Morever, cell architectures that promote F-actin assembly per se also activate YAP by kinase-dependent and independent mechanisms. These findings unveil the ability of GPCRs to activate the YAP oncogene through a newly recognized signaling function of the actin cytoskeleton, likely to be especially important for normal and cancerous stem cells.


Asunto(s)
Actinas/genética , Transformación Celular Neoplásica/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Subunidades alfa de la Proteína de Unión al GTP G12-G13/genética , Células Madre Neoplásicas/metabolismo , Proteínas Nucleares/genética , Transactivadores/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Polaridad Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Regulación de la Expresión Génica , Guanosina Trifosfato/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Madre Neoplásicas/patología , Proteínas Nucleares/metabolismo , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Proteínas Señalizadoras YAP
12.
Semin Cell Dev Biol ; 23(7): 770-84, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22898666

RESUMEN

The "Hippo" signaling pathway has emerged as a major regulator of cell proliferation and survival in metazoans. The pathway, as delineated by genetic and biochemical studies in Drosophila, consists of a kinase cascade regulated by cell-cell contact and cell polarity that inhibits the transcriptional coactivator Yorkie and its proliferative, anti-differentiation, antiapoptotic transcriptional program. The core pathway components are the GC kinase Hippo, which phosphorylates the noncatalytic polypeptide Mats/Mob1 and, with the assistance of the scaffold protein Salvador, phosphorylates the ndr-family kinase Lats. In turn phospho-Lats, after binding to phospho-Mats, autoactivates and phosphorylates Yorkie, resulting in its nuclear exit. Hippo also uses the scaffold protein Furry and a different Mob protein to control another ndr-like kinase, the morphogenetic regulator Tricornered. Architecturally homologous kinase cascades consisting of a GC kinase, a Mob protein, a scaffolding polypeptide and an ndr-like kinase are well described in yeast; in Saccharomyces cerevisiae, e.g., the MEN pathway promotes mitotic exit whereas the RAM network, using a different GC kinase, Mob protein, scaffold and ndr-like kinase, regulates cell polarity and morphogenesis. In mammals, the Hippo orthologs Mst1 and Mst2 utilize the Salvador ortholog WW45/Sav1 and other scaffolds to regulate the kinases Lats1/Lats2 and ndr1/ndr2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively regulate the Yorkie ortholog YAP in the epithelial cells of the liver and gut; loss of both Mst1 and Mst2 results in hyperproliferation and tumorigenesis that can be largely negated by reduction or elimination of YAP. Despite this conservation, considerable diversification in pathway composition and regulation is already evident; in skin, e.g., YAP phosphorylation is independent of Mst1Mst2 and Lats1Lats2. Moreover, in lymphoid cells, Mst1/Mst2, under the control of the Rap1 GTPase and independent of YAP, promotes integrin clustering, actin remodeling and motility while restraining the proliferation of naïve T cells. This review will summarize current knowledge of the structure and regulation of the kinases Hippo/Mst1&2, their noncatalytic binding partners, Salvador and the Rassf polypeptides, and their major substrates Warts/Lats1&2, Trc/ndr1&2, Mats/Mob1 and FOXO.


Asunto(s)
Proteínas Quinasas/metabolismo , Transducción de Señal , Animales , Activación Enzimática , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mitosis , Especificidad por Sustrato
13.
Gastroenterology ; 144(7): 1543-53, 1553.e1, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23454691

RESUMEN

BACKGROUND & AIMS: The Hippo signaling pathway is a context-dependent regulator of cell proliferation, differentiation, and apoptosis in species ranging from Drosophila to humans. In this study, we investigated the role of the core Hippo kinases-Mst1 and Mst2-in pancreatic development and homeostasis. METHODS: We used a Cre/LoxP system to create mice with pancreas-specific disruptions in Mst1 and Mst2 (Pdx1-Cre;Mst1(-/-);Mst2(fl/fl) mice), the mammalian orthologs of Drosophila Hippo. We used a transgenic approach to overexpress Yap, the downstream mediator of Hippo signaling, in the developing pancreas of mice. RESULTS: Contrary to expectations, the pancreatic mass of Pdx1-Cre;Mst1(-/-);Mst2(fl/fl) mice was reduced compared with wild-type mice, largely because of postnatal de-differentiation of acinar cells into duct-like cells. Development of this phenotype coincided with postnatal reactivation of YAP expression. Ectopic expression of YAP during the secondary transition (a stage at which YAP is normally absent) blocked differentiation of the endocrine and exocrine compartments, whereas loss of a single Yap allele reduced acinar de-differentiation. The phenotype of Pdx1-Cre;Mst1(-/-);Mst2(fl/fl) mice recapitulated cellular and molecular changes observed during chemical-induced pancreatitis in mice. CONCLUSIONS: The mammalian Hippo kinases, and YAP, maintain postnatal pancreatic acinar differentiation in mice.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Páncreas Exocrino/crecimiento & desarrollo , Fosfoproteínas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular , Diferenciación Celular , Proliferación Celular , Ratones , Ratones Transgénicos , Páncreas Exocrino/fisiología , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Serina-Treonina Quinasa 3 , Transducción de Señal , Proteínas Señalizadoras YAP
14.
Proc Natl Acad Sci U S A ; 108(49): E1312-20, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22042863

RESUMEN

Ablation of the kinases Mst1 and Mst2, orthologs of the Drosophila antiproliferative kinase Hippo, from mouse intestinal epithelium caused marked expansion of an undifferentiated stem cell compartment and loss of secretory cells throughout the small and large intestine. Although median survival of mice lacking intestinal Mst1/Mst2 is 13 wk, adenomas of the distal colon are common by this age. Diminished phosphorylation, enhanced abundance, and nuclear localization of the transcriptional coactivator Yes-associated protein 1 (Yap1) is evident in Mst1/Mst2-deficient intestinal epithelium, as is strong activation of ß-catenin and Notch signaling. Although biallelic deletion of Yap1 from intestinal epithelium has little effect on intestinal development, inactivation of a single Yap1 allele reduces Yap1 polypeptide abundance to nearly wild-type levels and, despite the continued Yap hypophosphorylation and preferential nuclear localization, normalizes epithelial structure. Thus, supraphysiologic Yap polypeptide levels are necessary to drive intestinal stem cell proliferation. Yap is overexpressed in 68 of 71 human colon cancers and in at least 30 of 36 colon cancer-derived cell lines. In colon-derived cell lines where Yap is overabundant, its depletion strongly reduces ß-catenin and Notch signaling and inhibits proliferation and survival. These findings demonstrate that Mst1 and Mst2 actively suppress Yap1 abundance and action in normal intestinal epithelium, an antiproliferative function that frequently is overcome in colon cancer through Yap1 polypeptide overabundance. The dispensability of Yap1 in normal intestinal homeostasis and its potent proliferative and prosurvival actions when overexpressed in colon cancer make it an attractive therapeutic target.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proliferación Celular , Colon/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células Madre/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Western Blotting , Proteínas de Ciclo Celular , Línea Celular Tumoral , Colon/patología , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Inmunohistoquímica , Mucosa Intestinal/metabolismo , Intestinos/citología , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Interferencia de ARN , Serina-Treonina Quinasa 3 , Células Madre/citología , Análisis de Matrices Tisulares , Factores de Transcripción , Proteínas Señalizadoras YAP
15.
Diabetes ; 72(1): 33-44, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36219823

RESUMEN

Excessive adiposity is the main cause of obesity and type two diabetes (T2D). Variants in human IMP2/IGF2BP2 gene are associated with increased risk of T2D. However, little is known about its role in adipogenesis and in insulin resistance. Here, we investigate the function of IMP2 during adipocyte development. Mice with Imp2 deletion in mesenchymal stem cells (MSC) are resistant to diet-induced obesity without glucose and insulin tolerance affected. Imp2 is essential for the early commitment of adipocyte-derived stem cells (ADSC) into preadipocytes, but the deletion of Imp2 in MSC is not required for the proliferation and terminal differentiation of committed preadipocytes. Mechanistically, Imp2 binds Wnt receptor Fzd8 mRNA and promotes its degradation by recruiting CCR4-NOT deadenylase complex in an mTOR-dependent manner. Our data demonstrate that Imp2 is required for maintaining white adipose tissue homeostasis through controlling mRNA stability in ADSC. However, the contribution of IMP2 to insulin resistance, a main risk of T2D, is not evident.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Células Madre Mesenquimatosas , Animales , Humanos , Ratones , Adipogénesis/genética , Diferenciación Celular/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Resistencia a la Insulina/genética , Células Madre Mesenquimatosas/metabolismo , Obesidad/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
16.
J Biol Chem ; 286(44): 38043-38053, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21914810

RESUMEN

Insulin activation of mTOR complex 1 is accompanied by enhanced binding of substrates. We examined the mechanism and contribution of this enhancement to insulin activation of mTORC1 signaling in 293E and HeLa cells. In 293E, insulin increased the amount of mTORC1 retrieved by the transiently expressed nonphosphorylatable 4E-BP[5A] to an extent that varied inversely with the amount of PRAS40 bound to mTORC1. RNAi depletion of PRAS40 enhanced 4E-BP[5A] binding to ∼70% the extent of maximal insulin, and PRAS40 RNAi and insulin together did not increase 4E-BP[5A] binding beyond insulin alone, suggesting that removal of PRAS40 from mTORC1 is the predominant mechanism of an insulin-induced increase in substrate access. As regards the role of increased substrate access in mTORC1 signaling, RNAi depletion of PRAS40, although increasing 4E-BP[5A] binding, did not stimulate phosphorylation of endogenous mTORC1 substrates S6K1(Thr(389)) or 4E-BP (Thr(37)/Thr(46)), the latter already ∼70% of maximal in amino acid replete, serum-deprived 293E cells. In HeLa cells, insulin and PRAS40 RNAi also both enhanced the binding of 4E-BP[5A] to raptor but only insulin stimulated S6K1 and 4E-BP phosphorylation. Furthermore, Rheb overexpression in 293E activated mTORC1 signaling completely without causing PRAS40 release. In the presence of Rheb and insulin, PRAS40 release is abolished by Akt inhibition without diminishing mTORC1 signaling. In conclusion, dissociation of PRAS40 from mTORC1 and enhanced mTORC1 substrate binding results from Akt and mTORC1 activation and makes little or no contribution to mTORC1 signaling, which rather is determined by Rheb activation of mTOR catalytic activity, through mechanisms that remain to be fully elucidated.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación de la Expresión Génica , Fosfoproteínas/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glutatión Transferasa/metabolismo , Células HeLa , Humanos , Insulina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos , Fosforilación , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
17.
J Biol Chem ; 285(45): 35029-38, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-20810663

RESUMEN

Epigenetic silencing of RASSF (Ras association domain family) genes RASSF1 and RASSF5 (also called NORE1) by CpG hypermethylation is found frequently in many cancers. Although the physiological roles of RASSF1 have been studied in some detail, the exact functions of RASSF5 are not well understood. Here, we show that RASSF5 plays an important role in mediating apoptosis in response to death receptor ligands, TNF-α and TNF-related apoptosis-inducing ligand. Depletion of RASSF5 by siRNA significantly reduced TNF-α-mediated apoptosis, likely through its interaction with proapoptotic kinase MST1, a mammalian homolog of Hippo. Consistent with this, siRNA knockdown of MST1 also resulted in resistance to TNF-α-induced apoptosis. To further study the role of Rassf5 in vivo, we generated Rassf5-deficient mouse. Inactivation of Rassf5 in mouse embryonic fibroblasts (MEFs) resulted in resistance to TNF-α- and TNF-related apoptosis-inducing ligand-mediated apoptosis. Importantly, Rassf5-null mice were significantly more resistant to TNF-α-induced apoptosis and failed to activate Mst1. Loss of Rassf5 also resulted in spontaneous immortalization of MEFs at earlier passages than the control MEFs, and Rassf5-null immortalized MEFs, but not the immortalized wild type MEFs, were fully transformed by K-RasG12V. Together, our results demonstrate a direct role for RASSF5 in death receptor ligand-mediated apoptosis and provide further evidence for RASSF5 as a tumor suppressor.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis/fisiología , Receptores de Muerte Celular/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas ras/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis , Línea Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Silenciador del Gen/fisiología , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Receptores de Muerte Celular/genética , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Supresoras de Tumor/genética , Proteínas ras/genética
18.
Curr Biol ; 18(5): 311-21, 2008 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-18328708

RESUMEN

BACKGROUND: MST1 and MST2 are the mammalian Ste20-related protein kinases most closely related to Drosophila Hippo, a major regulator of cell proliferation and survival during development. Overexpression of MST1 or MST2 in mammalian cells is proapototic; however, little is known concerning the physiologic regulation of the endogenous MST1/MST2 kinases, their role in mammalian cell proliferation, or the identity of the MST1/MST2 substrates critical to proliferative regulation. RESULTS: We show that MST1 and MST2 activity increases during mitosis, especially in nocodazole-arrested mitotic cells, where these kinases exhibit both an increase in both abundance and activation. MST1 and MST2 also can be activated nonphysiologically by okadaic acid or H2O2. The MOBKL1A and MOBKL1B polypeptides, homologs of the Drosophila MATS polypeptide, are identified as preferred MST1/MST2 substrates in vitro and are phosphorylated in cells in an MST1/MST2-dependent manner in mitosis and in response to okadaic acid or H2O2. MST1/MST2-catalyzed MOBKL1A/MOBKL1B phosphorylation alters the ability of MOBKL1A/MOBKL1B to bind and regulate downstream targets such as the NDR-family protein kinases. Thus, MOBKL1A/MOBKL1B phosphorylation in cells promotes MOBKL1A/MOBKL1B binding to the LATS1 kinase and enables H2O2-stimulated LATS1 activation loop phosphorylation. Most importantly, replacement of endogenous MOBKL1A/MOBKL1B by a nonphosphorylatable mutant is sufficient to accelerate cell proliferation substantially by speeding progression through G1/S as well as mitotic exit. CONCLUSIONS: These results establish that MST1 and MST2 are activated in mitosis and catalyze the mitotic phosphorylation of MOBKL1A/MOBKL1B. MOBKL1A/MOBKL1B phosphorylation, in turn, is sufficient to inhibit proliferation through actions at several points in the cell cycle.


Asunto(s)
Factor de Crecimiento de Hepatocito/metabolismo , Mitosis/fisiología , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Peróxido de Hidrógeno , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ácido Ocadaico , Fosforilación , Serina-Treonina Quinasa 3
19.
Proc Natl Acad Sci U S A ; 105(51): 20321-6, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19073936

RESUMEN

The Mst1 and Mst2 protein kinases are the mammalian homologs of hippo, a major inhibitor of cell proliferation in Drosophila. Mst1 is most abundant in lymphoid tissues. Mice lacking Mst1 exhibit markedly reduced levels of the Mst1 regulatory protein Nore1B/RAPL in lymphoid cells, whereas Mst2 abundance is unaltered. Mst1-null mice exhibit normal T cell development but low numbers of mature naïve T cells with relatively normal numbers of effector/memory T cells. In vitro, the Mst1-deficient naïve T cells exhibit markedly greater proliferation in response to stimulation of the T cell receptor whereas the proliferative responses of the Mst1-null effector/memory T cell cohort is similar to wild type. Thus, elimination of Mst1 removes a barrier to the activation and proliferative response of naïve T cells. The levels of Mst1 and Nore1B/RAPL in wild-type effector/memory T cells are approximately 10% those seen in wild-type naïve T cells, which may contribute to the enhanced proliferative responses of the former. Freshly isolated Mst1-null T cells exhibit high rates of ongoing apoptosis, a likely basis for their low numbers in vivo; they also exhibit defective clustering of LFA-1, as previously observed for Nore1B/RAPL-deficient T cells. Among known Mst1 substrates, only the phosphorylation of the cell cycle inhibitory proteins MOBKL1A/B is lost entirely in TCR-stimulated, Mst1-deficient T cells. Mst1/2-catalyzed MOBKL1A/B phosphorylation slows proliferation and is therefore a likely contributor to the anti-proliferative action of Mst1 in naïve T cells. The Nore1B/RAPL-Mst1 complex is a negative regulator of naïve T cell proliferation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Proliferación Celular , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Linfocitos T/citología , Animales , Proteínas Reguladoras de la Apoptosis , Activación de Linfocitos , Ratones , Fosforilación , Receptores de Antígenos de Linfocitos T/fisiología
20.
Mol Metab ; 48: 101209, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33705986

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) is a common metabolic disease. Variants in human IGF2 mRNA binding protein 2 (IMP2/IGF2BP2) are associated with increased risk of T2D. IMP2 contributes to T2D susceptibility primarily through effects on insulin secretion. However, the underlying mechanism is not known. METHODS: To understand the role of IMP2 in insulin secretion and T2D pathophysiology, we generated Imp2 pancreatic ß-cell specific knockout mice (ßIMP2KO) by recombining the Imp2flox allele with Cre recombinase driven by the rat insulin 2 promoter. We further characterized metabolic phenotypes of ßIMP2KO mice and assessed their ß-cell functions. RESULTS: The deletion of IMP2 in pancreatic ß-cells leads to reduced compensatory ß-cell proliferation and function. Mechanically, IMP2 directly binds to Pdx1 mRNA and stimulates its translation in an m6A dependent manner. Moreover, IMP2 orchestrates IGF2-AKT-GSK3ß-PDX1 signaling to stable PDX1 polypeptides. In human EndoC-ßH1 cells, the over-expression of IMP2 is capable to enhance cell proliferation, PDX1 protein level and insulin secretion. CONCLUSION: Our work therefore reveals IMP2 as a critical regulator of pancreatic ß-cell proliferation and function; highlights the importance of posttranscriptional gene expression in T2D pathology.


Asunto(s)
Adenosina/análogos & derivados , Proliferación Celular/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteínas de Homeodominio/metabolismo , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/genética , Transactivadores/metabolismo , Adenosina/metabolismo , Animales , Línea Celular , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Humanos , Insulina Regular Humana/administración & dosificación , Insulina Regular Humana/genética , Insulina Regular Humana/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/genética , Ratas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA