Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 25(7): 207, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237748

RESUMEN

Alzheimer's disease (AD), characterized by cognitive impairment, brain plaques, and tangles, is a global health concern affecting millions. It involves the build-up of amyloid-ß (Aß) and tau proteins, the formation of neuritic plaques and neurofibrillary tangles, cholinergic system dysfunction, genetic variations, and mitochondrial dysfunction. Various signaling pathways and metabolic processes are implicated in AD, along with numerous biomarkers used for diagnosis, risk assessment, and research. Despite these, there is no cure or effective treatment for AD. It is critically important to address this immediately to develop novel drug delivery systems (NDDS) capable of targeting the brain and delivering therapeutic agents to modulate the pathological processes of AD. This review summarizes AD, its pathogenesis, related signaling pathways, biomarkers, conventional treatments, the need for NDDS, and their application in AD treatment. It also covers preclinical, clinical, and ongoing trials, patents, and marketed AD formulations.


Asunto(s)
Enfermedad de Alzheimer , Sistemas de Liberación de Medicamentos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Sistemas de Liberación de Medicamentos/métodos , Animales , Biomarcadores/metabolismo , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Proteínas tau/metabolismo
2.
Crit Rev Food Sci Nutr ; 62(26): 7370-7394, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33951968

RESUMEN

Capsiate is a non-pungent analogue of capsaicin. It belongs to the family of capsinoids which are esters of vanillyl alcohol with fatty acids while capsaicin belongs to the family of capsaicinoids that are amides of vanillylamine with a variety of branched-chain fatty acids. While capsaicin is extensively reported for plethora of pharmacological actions, capsiate remains much less explored. Extracted from various species of Capsicum plant, the molecule has also been chemically synthesized via a number of synthetic and enzymatic routes. Based on its action on transient receptor potential vanilloid subfamily member 1 receptors, recent research has focused on its potential roles in treatment of obesity, metabolic disorders, cancer, cardiovascular disorders and gastro-intestinal disorders. Its toxicity profile has been reported to be much safe. The molecule, however, faces the challenge of low aqueous solubility and stability. It has been commercialized for its use as a weight loss supplement. However, the therapeutic potential of the compound which is much beyond boosting metabolism remains unexplored hitherto. This comprehensive review summarizes the studies demonstrating the therapeutic potential of capsiate in various pathological conditions. Discussed also are potential future directions for formulation strategies to develop efficient, safe and cost-effective dosage forms of capsiate to explore its role in various disease conditions. The databases investigated include Cochrane library, Medline, Embase, Pubmed and in-house databases. The search terms were "capsiate," "capsinoids," "thermogenesis," and their combinations. The articles were screened for relevance by going through their abstract. All the articles pertaining to physicochemical, physiological, pharmacological and therapeutic effects of capsiate have been included in the manuscript.


Asunto(s)
Capsaicina , Capsicum , Capsaicina/análogos & derivados , Capsaicina/farmacología , Capsicum/química , Humanos , Termogénesis , Pérdida de Peso
3.
Pharm Res ; 39(11): 2817-2829, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36195824

RESUMEN

PURPOSE: The aim of current study is to formulate, optimize and characterize the developed formulation of Mesalamine-Curcumin Nanostructured Lipid Carriers (Mes-Cur NLCs). METHODS: It was formulated using high pressure homogenization followed by probe sonication and formulation variables were optimized using Central Composite Design. The particle size (PS), zeta potential (ZP), entrapment efficiency (EE), drug release, cytotoxicity on NIH 3T3 fibroblasts cells and HaCaT keratinocytes cells and efficacy on RAW264.7 cells for optimized formulation was determined. RESULTS: The PS, ZP and EE were found to be 85.26 nm, -23.7 ± 7.45 mV, 99.2 ± 2.62 % (Mes) and 84 ± 1.51 % (Cur), respectively. The good correlation between predicted and obtained value indicated suitability and reproducibility of experimental design. NLCs showed spherical shape as confirmed by TEM. In vitro drug release profile of prepared formulation showed that Mes exhibited 100 % release at 48 h, whereas Cur exhibited 82.23 ± 2.97% release at 120 h. Both the drugs exhibited sustained release upon incorporation into the NLCs. The absence of any significant cell death during MTT assay performed on NIH 3T3 fibroblasts cells and HaCaT keratinocytes cells indicated that NLCs' were safe for use. Furthermore, significant reduction in nitric oxide level during anti-inflammatory evaluation of formulation on RAW264.7 cells showed excellent potential for the formulation to treat inflammation. The formulation was found stable as no significant difference between the PS, ZP and EE of the fresh and aged NLCs was observed. CONCLUSION: The outcomes of study deciphered successful formulation of Mes-Cur NLCs.


Asunto(s)
Curcumina , Nanoestructuras , Curcumina/farmacología , Portadores de Fármacos , Mesalamina , Lípidos , Reproducibilidad de los Resultados , Tamaño de la Partícula
4.
Drug Dev Ind Pharm ; 46(4): 597-605, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32162980

RESUMEN

Development of self-nanoemulsifying drug delivery systems (SNEDDS) of docosahexaenoic acid (DHA) is reported with the aim to achieve enhanced dissolution rate. The optimized composition of liquid SNEDDS (L-SNEDDS) formulation was Labrafil M1944 CS, 47% v/v Tween 80, 27% v/v Transcutol P, and 0.1% v/v DHA. L-SNEDDS were solidified using Syloid XDP 3150 as solid porous carrier. The droplet size, polydispersity index, zeta potential, percentage drug loading, and cloud point for L-SNEDDS were found to be 43.51 ± 1.36 nm, 0.186 ± 0.053, -19.20 ± 1.21 mV, 93.23 ± 1.71, and 88.60 ± 2.54 °C, respectively. Similarly, for solid SNEDDS (S-SNEDDS) the above parameters were found to be 57.32 ± 1.87 nm, 0.261 ± 0.043, -16.60 ± 2.18 mV, 91.23 ± 1.88, and 89.50 ± 1.18 °C, respectively. The formulations (L-SNEDDS, S-SNEDDS powder, and S-SNEDDS tablet) showed significant (p<.05) improvement in dissolution rate of drug in 0.1 N HCl (pH 1.2) and phosphate buffer (pH 6.8) as compared to unprocessed DHA. In both the dissolution media, the dissolution rate was found more that 85% in 90 min. Absence of drug precipitation, phase separation, and turbidity during thermodynamic stability studies indicated that the developed SNEDDS were stable. Hence, it was concluded that SNEDDS have offered sufficient stability as well as dissolution rate of DHA.


Asunto(s)
Ácidos Docosahexaenoicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Administración Oral , Disponibilidad Biológica , Ácidos Docosahexaenoicos/farmacocinética , Liberación de Fármacos , Estabilidad de Medicamentos , Emulsiones/química , Tamaño de la Partícula , Dióxido de Silicio/química , Solubilidad , Tensoactivos , Comprimidos
5.
Cereb Cortex ; 28(4): 1087-1104, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28158493

RESUMEN

Dendritic spines compartmentalize information in the brain, and their morphological characteristics are thought to underly synaptic plasticity. Here we identify copine-6 as a novel modulator of dendritic spine morphology. We found that brain-derived neurotrophic factor (BDNF) - a molecule essential for long-term potentiation of synaptic strength - upregulated and recruited copine-6 to dendritic spines in hippocampal neurons. Overexpression of copine-6 increased mushroom spine number and decreased filopodia number, while copine-6 knockdown had the opposite effect and dramatically increased the number of filopodia, which lacked PSD95. Functionally, manipulation of post-synaptic copine-6 levels affected miniature excitatory post-synaptic current (mEPSC) kinetics and evoked synaptic vesicle recycling in contacting boutons, and post-synaptic knockdown of copine-6 reduced hippocampal LTP and increased LTD. Mechanistically, copine-6 promotes BDNF-TrkB signaling and recycling of activated TrkB receptors back to the plasma membrane surface, and is necessary for BDNF-induced increases in mushroom spines in hippocampal neurons. Thus copine-6 regulates BDNF-dependent changes in dendritic spine morphology to promote synaptic plasticity.


Asunto(s)
Proteínas Portadoras/metabolismo , Espinas Dendríticas/fisiología , Hipocampo/citología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Neuronas/ultraestructura , Vesículas Sinápticas/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Proteínas Portadoras/genética , Células Cultivadas , Espinas Dendríticas/ultraestructura , Homólogo 4 de la Proteína Discs Large/metabolismo , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Técnicas de Cultivo de Órganos , Ratas , Receptor trkB/genética , Receptor trkB/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Sinapsis/ultraestructura , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/genética , Vesículas Sinápticas/efectos de los fármacos , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
6.
Curr Pharm Des ; 30(14): 1049-1059, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38551046

RESUMEN

The creation of mRNA vaccines has transformed the area of vaccination and allowed for the production of COVID-19 vaccines with previously unheard-of speed and effectiveness. The development of novel strategies to enhance the delivery and efficiency of mRNA vaccines has been motivated by the ongoing constraints of the present mRNA vaccine delivery systems. In this context, intriguing methods to get beyond these restrictions include lipid nanoparticles, self-amplifying RNA, electroporation, microneedles, and cell-targeted administration. These innovative methods could increase the effectiveness, safety, and use of mRNA vaccines, making them more efficient, effective, and broadly available. Additionally, mRNA technology may have numerous and far-reaching uses in the field of medicine, opening up fresh avenues for the diagnosis and treatment of disease. This paper gives an overview of the existing drawbacks of mRNA vaccine delivery techniques, the creative solutions created to address these drawbacks, and their prospective public health implications. The development of mRNA vaccines for illnesses other than infectious diseases and creating scalable and affordable manufacturing processes are some of the future directions for research in this area that are covered in this paper.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Sistemas de Liberación de Medicamentos , SARS-CoV-2 , Vacunas de ARNm , Humanos , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Animales , Nanopartículas/química , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , Electroporación
7.
Curr Pharm Des ; 30(15): 1133-1135, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584552

RESUMEN

CRISPR and gene editing technologies have emerged as transformative tools in medicine, offering unprecedented precision in targeting genetic disorders and revolutionizing drug development. This review explores the multifaceted impact of CRISPR across various medical domains, from hereditary diseases to infectious diseases and cancer. The potential of CRISPR in personalized medicine, therapeutic innovation, and pandemic prevention is highlighted, along with its role in reshaping traditional drug development processes. However, alongside its promise, ethical considerations loom large, particularly regarding germline editing and equitable access to treatments. The commercialization of CRISPR poses further challenges, raising questions about affordability and healthcare equity. Collaboration among scientists, policymakers, and the public is emphasized to navigate the ethical and societal implications of CRISPR responsibly. As the field advances, it is essential to ensure that the benefits of CRISPR are realized while addressing potential risks and maintaining a commitment to the well-being of future generations.


Asunto(s)
Desarrollo de Medicamentos , Edición Génica , Humanos , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Medicina de Precisión , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Animales
8.
Eur J Pharmacol ; 975: 176645, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759707

RESUMEN

Diabetic wounds (DWs) are open sores that can occur anywhere on a diabetic patient's body. They are often complicated by infections, hypoxia, oxidative stress, hyperglycemia, and reduced growth factors and nucleic acids. The healing process involves four phases: homeostasis, inflammation, proliferation, and remodeling, regulated by various cellular and molecular events. Numerous genes and signaling pathways such as VEGF, TGF-ß, NF-κB, PPAR-γ, MMPs, IGF, FGF, PDGF, EGF, NOX, TLR, JAK-STAT, PI3K-Akt, MAPK, ERK, JNK, p38, Wnt/ß-catenin, Hedgehog, Notch, Hippo, FAK, Integrin, and Src pathways are involved in these events. These pathways and genes are often dysregulated in DWs leading to impaired healing. The present review sheds light on the pathogenesis, healing process, signaling pathways, and genes involved in DW. Further, various therapeutic strategies that target these pathways and genes via nanotechnology are also discussed. Additionally, clinical trials on DW related to gene therapy are also covered in the present review.


Asunto(s)
Complicaciones de la Diabetes , Transducción de Señal , Cicatrización de Heridas , Animales , Humanos , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Terapia Genética/métodos
9.
Curr Pharm Des ; 30(16): 1211-1216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584540

RESUMEN

Self-nano Emulsifying Drug Delivery Systems (SNEDDS) are novel formulations that can enhance the solubility and bioavailability of poorly water-soluble drugs. SNEDDS are composed of lipids, surfactants, co-solvents, and drugs and can spontaneously form nanoemulsions when mixed with water under mild agitation. SNEDDS can be formulated as liquid or solid dosage forms and can improve drug absorption by increasing the interfacial area, protecting the drug from degradation, and facilitating lymphatic transport. SNEDDS is characterized by various parameters such as particle size, zeta potential, droplet morphology, emulsification efficiency, drug solubility, and stability. SNEDDS offers several advantages over conventional dosage forms, such as dose reduction, faster onset of action, reduced variability, versatility, and ease of formulation. However, SNEDDS also face some limitations and challenges, such as drug precipitation, cost-effectiveness, compatibility with capsule shells, and lack of predictive in vitro models. SNEDDS has a promising future in the field of pharmaceuticals, especially for personalized medicine and targeted drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Emulsiones , Solubilidad , Agua , Emulsiones/química , Humanos , Preparaciones Farmacéuticas/administración & dosificación , Preparaciones Farmacéuticas/química , Agua/química , Nanopartículas/química , Desarrollo de Medicamentos
10.
Curr Drug Targets ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988154

RESUMEN

Quercetin is a natural flavonoid with various pharmacological actions such as anti-inflammatory, antioxidant, antimicrobial, anticancer, antiviral, antidiabetic, cardioprotective, neuroprotective, and antiviral activities. Looking at these enormous potentials, researchers have explored how they can be used to manage numerous cancers. It's been studied for cancer management due to its anti-angiogenesis, anti-metastatic, and antiproliferative mechanisms. Despite having these proven pharmacological activities, the clinical use of quercetin is limited due to its first-- pass metabolism, poor solubility, and bioavailability. To address these shortcomings, researchers have fabricated various nanocarriers-based formulations to fight cancer. The present review overshadows the pharmacological potential, mechanisms, and application of nanoformulations against different cancers.

11.
Curr Pharm Des ; 30(21): 1641-1649, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38798217

RESUMEN

Polypharmacy in psychiatry is an in-depth examination of drug-drug interactions and treatment challenges that explores the intricate landscape of psychiatric polypharmacy, a practice involving the prescription of multiple medications to individuals with mental health disorders. This review is based on the critical aspects of drug-drug interactions and the associated treatment challenges. Psychiatric polypharmacy is motivated by the complexity of mental health conditions, where monotherapy may be insufficient. While it offers potential benefits, the practice raises concerns related to drug interactions that can compromise safety and efficacy. The review delves into the prevalence and clinical indications for psychiatric polypharmacy, thoroughly analyzing drug interactions, treatment challenges, and strategies for mitigation. Real-world case studies illustrate the complexities and outcomes of managing complex medication regimens, while emerging trends in personalized medicine, advancements in psychopharmacology, multidisciplinary approaches, and digital health solutions offer a glimpse into the future of psychiatric polypharmacy. This examination underscores the importance of a patient-centered, evidence-based approach in optimizing psychiatric polypharmacy to achieve therapeutic benefits while minimizing risks.


Asunto(s)
Interacciones Farmacológicas , Trastornos Mentales , Polifarmacia , Humanos , Trastornos Mentales/tratamiento farmacológico , Psicotrópicos/uso terapéutico , Psiquiatría
12.
Artículo en Inglés | MEDLINE | ID: mdl-39279691

RESUMEN

Skin cancer, which comprises both melanoma and non-melanoma forms, is frequently diagnosed as the predominant malignancy among today's population. Existing treatments are often prolonged and complex, have a low rate of success, and have side effects. This complexity leads to poor patient adherence and increases the risk of disease recurrence. Ethosomes, extensively studied for their applications in topical and transdermal therapies, are distinguished by their high ethanol content, which facilitates enhanced skin penetration and efficient drug delivery. Compared to traditional liposomes, ethosomes offer notable advantages due to their unique composition, demonstrating potential efficacy in treating various skin conditions, including basal cell carcinoma, squamous cell carcinoma, and melanoma. The present review provides a brief introduction to skin melanoma and its pathogenesis, signalling pathways, biomarkers, the need for ethogel-based drug delivery, applications of ethosomes against skin cancer, and clinical trials.

13.
Pathol Res Pract ; 262: 155546, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39191194

RESUMEN

Colorectal cancer (CRC) is an abnormal proliferation of cells within the colon and rectum, leading to the formation of polyps and disruption of mucosal functions. The disease development is influenced by a combination of factors, including inflammation, exposure to environmental mutagens, genetic alterations, and impairment in signaling pathways. Traditional treatments such as surgery, radiation, and chemotherapy are often used but have limitations, including poor solubility and permeability, treatment resistance, side effects, and post-surgery issues. Novel Drug Delivery Systems (NDDS) have emerged as a superior alternative, offering enhanced drug solubility, precision in targeting cancer cells, and regulated drug release. Thereby addressing the shortcomings of conventional therapies and showing promise for more effective CRC management. The present review sheds light on the pathogenesis, signaling pathways, biomarkers, conventional treatments, need for NDDS, and application of NDDS against CRC. Additionally, clinical trials, ongoing clinical trials, marketed formulations, and patents on CRC are also covered in the present review.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Antineoplásicos/uso terapéutico , Animales
14.
Curr Radiopharm ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031270

RESUMEN

BACKGROUND: Ovarian disease constitutes various types of endocrine disorders, such as polycystic ovarian syndrome (PCOS), ovarian cancer, premature ovarian failure, ovarian endometriosis, and ovarian cysts. The prevalence of ovarian-related diseases is highly vulnerable in the world. The utility of various drug delivery systems for ovarian diseases has resulted in varied success. Moreover, most of them lead to severe adverse effects and are incapable of ameliorating the signs and symptoms of the condition. HYPOTHESIS: Intrauterine devices (IUDs) have positioned themselves as a mechanism to deliver the drug for various ovarian-related diseases. Thereby avoiding various stability-related issues arising due to various physiological barriers of the female reproductive tract. However, the use of intrauterine devices for drug delivery to the ovaries has not been fully explored. This is attributed to the fact that they cause cysts in the ovaries and skepticism among patients and physicians. Photo-sensitive devices are an appealing approach for managing disorders affecting the ovaries. Photo-sensitive in situ forming intrauterine implants (IUIs) have several advantages, including simplicity in application, reduced invasiveness, as well as improved site-specific drug release control. Polymeric nanoparticles (PNPs) loaded with a drug may be a suitable choice to provide sustained release, alter the pharmacokinetics, and reduce the dose and dosing frequency. CONCLUSION: The current manuscript hypothesizes the utility of a PNP-loaded biodegradable photo-responsive intrauterine implantable device as an alternate novel strategy for ameliorating ovarian-related diseases.

15.
Curr Drug Res Rev ; 15(3): 272-285, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36683365

RESUMEN

BACKGROUND: Curcumin (CRM) is known to possess various therapeutic properties, such as anti-inflammatory and antidiabetic properties, and is, therefore, considered to be an effective therapeutic. OBJECTIVE: A sensitive method for the estimation of CRM in plasma, as well as fecal matter-based solid self-nano emulsifying drug delivery system (S-SNEDDS), has been reported for the first time. METHODS: A bioanalytical method was optimized using Box-Behnken Design having 13 runs and 3 responses. The optimized method was developed using methanol and water (70:30 v/v) with a flow rate of 1 mL/min. Quercetin was used as an internal standard. A specificity test was also performed for the developed CRM solid self-nano emulsifying drug delivery system. RESULTS: The retention time of CRM was found to be 14.18 minutes. The developed method was validated and found to be linear in the range of 50-250 ng/mL with an R2 of 0.999. Accuracy studies indicated that CRM had a percentage recovery of less than 105% and more than 95%, respectively. Precision studies were carried out for inter, intraday, and inter-analyst precision, and the %RSD was found to be less than 2%. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 3.37 ng/mL and 10.23 ng/mL, respectively. Stability studies for shortterm, long term and freeze-thaw cycles showed a %RSD of less than 2%, indicating the stability of CRM in the plasma matrix. Moreover, the blank fecal microbiota extract slurry did not show any peak at the retention time of CRM in a CRM-loaded solid nanoemulsifying drug delivery system containing fecal microbiota extract indicating its specificity. CONCLUSION: Hence, the developed method can have clinical implications as it helps estimate CRM in blood samples and also provides a simple and sensitive method for the estimation of plant-based flavonoids along with fecal microbiota extract formulations.


Asunto(s)
Curcumina , Ratas , Animales , Cromatografía Líquida de Alta Presión/métodos , Límite de Detección , Composición de Medicamentos , Sistemas de Liberación de Medicamentos
16.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-37259345

RESUMEN

Polycystic Ovarian Syndrome (PCOS) comprises a set of symptoms that pose significant risk factors for various diseases, including type 2 diabetes, cardiovascular disease, and cancer. Effective and safe methods to treat all the pathological symptoms of PCOS are not available. The gut microbiota has been shown to play an essential role in PCOS incidence and progression. Many dietary plants, prebiotics, and probiotics have been reported to ameliorate PCOS. Gut microbiota shows its effects in PCOS via a number of mechanistic pathways including maintenance of homeostasis, regulation of lipid and blood glucose levels. The effect of gut microbiota on PCOS has been widely reported in animal models but there are only a few reports of human studies. Increasing the diversity of gut microbiota, and up-regulating PCOS ameliorating gut microbiota are some of the ways through which prebiotics, probiotics, and polyphenols work. We present a comprehensive review on polyphenols from natural origin, probiotics, and fecal microbiota therapy that may be used to treat PCOS by modifying the gut microbiota.

17.
Biomed Pharmacother ; 167: 115512, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37725878

RESUMEN

Sesamol is a lignan of sesame seeds and a natural phenolic molecule that has emerged as a useful medical agent. Sesamol is a non-toxic phytoconstituent, which exerts certain valuable effects in the management of cancer, diabetes, cardiovascular diseases, neurodegenerative diseases (NDs), etc. Sesamol is known to depict its neuroprotective role by various mechanisms, such as metabolic regulators, action on oxidative stress, neuroinflammation, etc. However, its poor oral bioavailability, rapid excretion (as conjugates), and susceptibility to gastric irritation/toxicity (particularly in rats' forestomach) may restrict its effectiveness. To overcome the associated limitations, novel drug delivery system-based formulations of sesamol are emerging and being researched extensively. These can conjugate with sesamol and enhance the bioavailability and solubility of free sesamol, along with delivery at the target site. In this review, we have summarized various research works highlighting the role of sesamol on various NDs, including Alzheimer's disease, Huntington's disease, Amyotrophic lateral sclerosis, and Parkinson's disease. Moreover, the formulation strategies and neuroprotective role of sesamol-based nano-formulations have also been discussed.

18.
Science ; 380(6644): 543-551, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37141366

RESUMEN

The ability to form precise, episodic memories develops with age, with young children only able to form gist-like memories that lack precision. The cellular and molecular events in the developing hippocampus that underlie the emergence of precise, episodic-like memory are unclear. In mice, the absence of a competitive neuronal engram allocation process in the immature hippocampus precluded the formation of sparse engrams and precise memories until the fourth postnatal week, when inhibitory circuits in the hippocampus mature. This age-dependent shift in precision of episodic-like memories involved the functional maturation of parvalbumin-expressing interneurons in subfield CA1 through assembly of extracellular perineuronal nets, which is necessary and sufficient for the onset of competitive neuronal allocation, sparse engram formation, and memory precision.


Asunto(s)
Hipocampo , Memoria Episódica , Ratones , Animales , Hipocampo/fisiología , Neuronas/fisiología , Interneuronas , Ratones Endogámicos C57BL
19.
Curr Neuropharmacol ; 21(7): 1558-1574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35950245

RESUMEN

Quercetin (Qu), a dietary flavonoid, is obtained from many fruits and vegetables such as coriander, broccoli, capers, asparagus, onion, figs, radish leaves, cranberry, walnuts, and citrus fruits. It has proven its role as a nutraceutical owing to numerous pharmacological effects against various diseases in preclinical studies. Despite these facts, Qu and its nanoparticles are less explored in clinical research as a nutraceutical. The present review covers various neuroprotective actions of Qu against various neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Huntington's, and Amyotrophic lateral sclerosis. A literature search was conducted to systematically review the various mechanistic pathways through which Qu elicits its neuroprotective actions and the challenges associated with raw Qu that compromise therapeutic efficacy. The nanoformulations developed to enhance Qu's therapeutic efficacy are also covered. Various ongoing/completed clinical trials related to Qu in treating various diseases, including NDs, are also tabulated. Despite these many successes, the exploration of research on Qu-loaded nanoformulations is limited mostly to preclinical studies, probably due to poor drug loading and stability of the formulation, time-consuming steps involved in the formulation, and their poor scale-up capacity. Hence, future efforts are required in this area to reach Qu nanoformulations to the clinical level.


Asunto(s)
Nanopartículas , Enfermedades Neurodegenerativas , Humanos , Quercetina/uso terapéutico , Quercetina/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico
20.
Pharmaceutics ; 14(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36432734

RESUMEN

Diabetic foot ulcer (DFU) is a multifactorial disease and one of the complications of diabetes. The global burden of DFU in the health sector is increasing at a tremendous rate due to its cost management related to hospitalization, medical costs and foot amputation. Hence, to manage DFU/DWs, various attempts have been made, including treating wounds systematically/topically using synthetic drugs, herbal drugs, or tissue engineering based surgical dressings. However, less attention has been paid to the intrinsic factors that are also the leading cause of diabetes mellitus (DM) and its complications. One such factor is gut dysbiosis, which is one of the major causes of enhancing the counts of Gram-negative bacteria. These bacteria produce lipopolysaccharides, which are a major contributing factor toward insulin resistance and inflammation due to the generation of oxidative stress and immunopathy. These all lead to DM and DFU. Probiotics are the commercial form of beneficial gut microbes that are taken as nutraceuticals by people of all ages to improve gut immunity and prevent gut dysbiosis. However, the role of probiotics has been less explored in the management of DFU. Hence, the therapeutic potential of probiotics in managing DFU is fully described in the current review. This report covers the linkage between gut dysbiosis and DFU, sources of probiotics, the mechanisms of probiotics in DW healing, and the impact of probiotic supplementation in treating DFU. In addition, techniques for the stabilization of probiotics, market status, and patents related to probiotics have been also covered. The relevant data were gathered from PubMed, Scopus, Taylor and Francis, Science Direct, and Google Scholar. Our systematic review discusses the utilization of probiotic supplementation as a nutraceutical for the management of DFU.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA