Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Res Int ; 2017: 8058307, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28243603

RESUMEN

Traditional cancer treatments like radiotherapy and chemotherapy have drawbacks and are not selective for killing only cancer cells. Nonthermal atmospheric pressure plasmas with dielectric barrier discharge (DBD) can be applied to living cells and tissues and have emerged as novel tools for localized cancer therapy. The purpose of this study was to investigate the different effects caused by miniature DBD (mDBD) plasma to A549 lung cancer cells. In this study, A549 lung cancer cells cultured in 12 well plates were treated with mDBD plasma for specified treatment times to assess the changes in the size of the area of cell detachment, the viability of attached or detached cells, and cell migration. Furthermore, we investigated an innovative mDBD plasma-based therapy for localized treatment of lung cancer cells through apoptotic induction. Our results indicate that plasma treatment for 120 sec causes apoptotic cell death in 35.8% of cells, while mDBD plasma treatment for 60 sec, 30 sec, or 15 sec causes apoptotic cell death in 20.5%, 14.1%, and 6.3% of the cell population, respectively. Additionally, we observed reduced A549 cell migration in response to mDBD plasma treatment. Thus, mDBD plasma system can be a viable platform for localized lung cancer therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Electricidad , Neoplasias Pulmonares/patología , Gases em Plasma/farmacología , Células A549 , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Recuento de Células , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Humanos , Microscopía Fluorescente , Factores de Tiempo
2.
Sci Rep ; 7(1): 12868, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28993681

RESUMEN

Recurrence of intervertebral disc (IVD) herniation is the most important factor leading to chronic low back pain and subsequent disability after discectomy. Efficacious annulus fibrosus (AF) repair strategy that delivers cells and biologics to IVD injury site is needed to limit the progression of disc degeneration and promote disc self-regeneration capacities after discectomy procedures. In this study, a biphasic mechanically-conditioned scaffold encapsulated with human adipose-derived stem cells (ASCs) is studied as a potential treatment strategy for AF defects. Equiaxial strains and frequencies were applied to ASCs-encapsulated scaffolds to identify the optimal loading modality to induce AF differentiation. Equiaxial loading resulted in 2-4 folds increase in secretion of extracellular matrix proteins and the reorganization of the matrix fibers and elongations of the cells along the load direction. Further, the equiaxial load induced region-specific differentiation of ASCs within the inner and outer regions of the biphasic scaffolds. Gene expression of AF markers was upregulated with 5-30 folds within the equiaxially loaded biphasic scaffolds compared to unstrained samples. The results suggest that there is a specific value of equiaxial strain favorable to differentiate ASCs towards AF lineage and that ASCs-embedded biphasic scaffold can potentially be utilized to repair the AF defects.


Asunto(s)
Tejido Adiposo/citología , Anillo Fibroso/fisiología , Diferenciación Celular , Estrés Mecánico , Andamios del Tejido/química , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Forma de la Célula/efectos de los fármacos , Colágeno/farmacología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Espacio Extracelular/metabolismo , Perfilación de la Expresión Génica , Glicosaminoglicanos/metabolismo , Humanos
3.
Biomed Res Int ; 2017: 6085741, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29057263

RESUMEN

Nosocomial infections caused by opportunistic bacteria pose major healthcare problem worldwide. Out of the many microorganisms responsible for such infections, Pseudomonas aeruginosa is a ubiquitous bacterium that accounts for 10-20% of hospital-acquired infections. These infections have mortality rates ranging from 18 to 60% and the cost of treatment ranges from $20,000 to $80,000 per infection. The formation of biofilms on medical devices and implants is responsible for the majority of those infections. Only limited progress has been made to prevent this issue in a safe and cost-effective manner. To address this, we propose employing jet plasma to break down and inactivate biofilms in vitro. Moreover, to improve the antimicrobial effect on the biofilm, a treatment method using a combination of jet plasma and a biocide known as chlorhexidine (CHX) digluconate was investigated. We found that complete sterilization of P. aeruginosa biofilms can be achieved after combinatorial treatment using plasma and CHX. A decrease in biofilm viability was also observed using confocal laser scanning electron microscopy (CLSM). This treatment method sterilized biofilm-contaminated surfaces in a short treatment time, indicating it to be a potential tool for the removal of biofilms present on medical devices and implants.


Asunto(s)
Antiinfecciosos Locales/farmacología , Gases em Plasma , Esterilización/métodos , Biopelículas/efectos de los fármacos , Biopelículas/efectos de la radiación , Clorhexidina/análogos & derivados , Clorhexidina/farmacología , Humanos , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/efectos de la radiación , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA