Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Earth Space Sci ; 7(8): e2020EA001106, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32999898

RESUMEN

A new model validation and performance assessment tool is introduced, the sliding threshold of observation for numeric evaluation (STONE) curve. It is based on the relative operating characteristic (ROC) curve technique, but instead of sorting all observations in a categorical classification, the STONE tool uses the continuous nature of the observations. Rather than defining events in the observations and then sliding the threshold only in the classifier/model data set, the threshold is changed simultaneously for both the observational and model values, with the same threshold value for both data and model. This is only possible if the observations are continuous and the model output is in the same units and scale as the observations, that is, the model is trying to exactly reproduce the data. The STONE curve has several similarities with the ROC curve-plotting probability of detection against probability of false detection, ranging from the (1,1) corner for low thresholds to the (0,0) corner for high thresholds, and values above the zero-intercept unity-slope line indicating better than random predictive ability. The main difference is that the STONE curve can be nonmonotonic, doubling back in both the x and y directions. These ripples reveal asymmetries in the data-model value pairs. This new technique is applied to modeling output of a common geomagnetic activity index as well as energetic electron fluxes in the Earth's inner magnetosphere. It is not limited to space physics applications but can be used for any scientific or engineering field where numerical models are used to reproduce observations.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35935034

RESUMEN

Recent improvements in data collection volume from planetary and space physics missions have allowed the application of novel data science techniques. The Cassini mission for example collected over 600 gigabytes of scientific data from 2004 to 2017. This represents a surge of data on the Saturn system. In comparison, the previous mission to Saturn, Voyager over 20 years earlier, had onboard a ~70 kB 8-track storage ability. Machine learning can help scientists work with data on this larger scale. Unlike many applications of machine learning, a primary use in planetary space physics applications is to infer behavior about the system itself. This raises three concerns: first, the performance of the machine learning model, second, the need for interpretable applications to answer scientific questions, and third, how characteristics of spacecraft data change these applications. In comparison to these concerns, uses of "black box" or un-interpretable machine learning methods tend toward evaluations of performance only either ignoring the underlying physical process or, less often, providing misleading explanations for it. The present work uses Cassini data as a case study as these data are similar to space physics and planetary missions at Earth and other solar system objects. We build off a previous effort applying a semi-supervised physics-based classification of plasma instabilities in Saturn's magnetic environment, or magnetosphere. We then use this previous effort in comparison to other machine learning classifiers with varying data size access, and physical information access. We show that incorporating knowledge of these orbiting spacecraft data characteristics improves the performance and interpretability of machine leaning methods, which is essential for deriving scientific meaning. Building on these findings, we present a framework on incorporating physics knowledge into machine learning problems targeting semi-supervised classification for space physics data in planetary environments. These findings present a path forward for incorporating physical knowledge into space physics and planetary mission data analyses for scientific discovery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA