Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Environ Microbiol ; 25(10): 2049-2053, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37286495

RESUMEN

Chronic nitrogen inputs can alleviate N limitation and potentially impose N losses in forests, indicated by soil enrichment in 15 N over 14 N. However, the complexity of the nitrogen cycle hinders accurate quantification of N fluxes. Simultaneously, soil ecologists are striving to find meaningful indicators to characterise the "openness" of the nitrogen cycle. We integrate soil δ15 N with constrained ecosystem N losses and the functional gene potential of the soil microbiome in 14 temperate forest catchments. We show that N losses are associated with soil δ15 N and that δ15 N scales with the abundance of soil bacteria. The abundance of the archaeal amoA gene, representing the first step in nitrification (ammonia oxidation to nitrite), followed by the abundance of narG and napA genes, associated with the first step in denitrification (nitrate reduction to nitrite), explains most of the variability in soil δ15 N. These genes are more informative than the denitrification genes nirS and nirK, which are directly linked to N2 O production. Nitrite formation thus appears to be the critical step associated with N losses. Furthermore, we show that the genetic potential for ammonia oxidation and nitrate reduction is representative of forest soil 15 N enrichment and thus indicative of ecosystem N losses.


Asunto(s)
Microbiota , Nitratos , Amoníaco , Archaea/genética , Nitrógeno/análisis , Nitritos , Bosques , Nitrificación , Oxidación-Reducción , Suelo , Microbiota/genética , Microbiología del Suelo , Desnitrificación
2.
Glob Chang Biol ; 28(17): 5007-5026, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35722720

RESUMEN

The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.


Asunto(s)
Microbiota , Hielos Perennes , Regiones Árticas , Retroalimentación , Hielos Perennes/química , Filogenia , Suelo/química
3.
Glob Chang Biol ; 25(4): 1547, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30375707

RESUMEN

"Comparison of nitrogen inputs and accumulation in 210 Pb-dated peat cores: Evidence for biological N2 -fixation in Central European peatlands despite decades of atmospheric N pollution" https://doi.org/10.1111/gcb.14505, by Martin Novak, Melanie A. Vile, Jan Curik, Bohuslava Cejkova, Jiri Barta, Marketa Stepanova, Ivana Jackova, Frantisek Buzek, Leona Bohdalkova, Eva Prechova, Frantisek Veselovsky, Marie Adamova, Ivana Valkova and Arnost Komarek. The above article, first published online in Wiley Online Library (wileyonlinelibrary.com) in Global Change Biology, has been retracted by agreement between the authors, the journal Editor-in-Chief, Stephen P. Long, and John Wiley & Sons Ltd. Since publication of the above article, it was brought to the attention of the authors that the peat accretion rates violate reasonable ranges of peatland C/N/P stoichiometry, placing the quantitative conclusions of the article in serious error. The authors apologize for any inconvenience the publication of this work may have caused our readers. REFERENCE Novak, M., Vile, M. A., Cejkova, B., Barta, J., Stepanova, M., Jackova, I., Buzek, F., Bohdalkova, L., Prechova, E., Veselovsky, F., Adamova, M., Valkova, I., & Komarek, A. (2018). Comparison of nitrogen inputs and accumulation in 210 Pb-dated peat cores: Evidence for biological N2 -fixation in Central European peatlands despite decades of atmospheric N pollution. Global Change Biology.. https://doi.org/10.1111/gcb.14505.

4.
Molecules ; 24(18)2019 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-31547345

RESUMEN

Three 1,4,7,10-tetraazacyclododecane-based ligands disubstituted in 1,4-positions with phosphonic acid, phosphonate monoethyl-ester, and H-phosphinic acid pendant arms, 1,4-H4do2p, 1,4-H2do2pOEt, and 1,4-H2Bn2do2pH, were synthesized and their coordination to selected metal ions, Mg(II), Ca(II), Mn(II), Zn(II), Cu(II), Eu(III), Gd(III), and Tb(III), was investigated. The solid-state structure of the phosphonate ligand, 1,4-H4do2p, was determined by single-crystal X-ray diffraction. Protonation constants of the ligands and stability constants of their complexes were obtained by potentiometry, and their values are comparable to those of previously studied analogous 1,7-disubstitued cyclen derivatives. The Gd(III) complex of 1,4-H4do2p is ~1 order of magnitude more stable than the Gd(III) complex of the 1,7-analogue, probably due to the disubstituted ethylenediamine-like structural motif in 1,4-H4do2p enabling more efficient wrapping of the metal ion. Stability of Gd(III)-1,4-H2do2pOEt and Gd(III)-H2Bn2do2pH complexes is low and the constants cannot be determined due to precipitation of the metal hydroxide. Protonations of the Cu(II), Zn(II), and Gd(III) complexes probably takes place on the coordinated phosphonate groups. Complexes of Mn(II) and alkali-earth metal ions are significantly less stable and are not formed in acidic solutions. Potential presence of water molecule(s) in the coordination spheres of the Mn(II) and Ln(III) complexes was studied by variable-temperature NMR experiments. The Mn(II) complexes of the ligands are not hydrated. The Gd(III)-1,4-H4do2p complex undergoes hydration equilibrium between mono- and bis-hydrated species. Presence of two-species equilibrium was confirmed by UV-Vis spectroscopy of the Eu(III)-1,4-H4do2p complex and hydration states were also determined by luminescence measurements of the Eu(III)/Tb(III)-1,4-H4do2p complexes.


Asunto(s)
Complejos de Coordinación/química , Gadolinio/química , Compuestos Heterocíclicos/química , Organofosfonatos/química , Medios de Contraste , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Ciclamas , Europio/química , Ligandos , Espectroscopía de Resonancia Magnética , Manganeso/química , Ácidos Fosfínicos/química , Potenciometría , Espectrofotometría Ultravioleta , Temperatura
5.
Glob Chang Biol ; 24(8): 3401-3415, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29774972

RESUMEN

Climate change in Arctic ecosystems fosters permafrost thaw and makes massive amounts of ancient soil organic carbon (OC) available to microbial breakdown. However, fractions of the organic matter (OM) may be protected from rapid decomposition by their association with minerals. Little is known about the effects of mineral-organic associations (MOA) on the microbial accessibility of OM in permafrost soils and it is not clear which factors control its temperature sensitivity. In order to investigate if and how permafrost soil OC turnover is affected by mineral controls, the heavy fraction (HF) representing mostly MOA was obtained by density fractionation from 27 permafrost soil profiles of the Siberian Arctic. In parallel laboratory incubations, the unfractionated soils (bulk) and their HF were comparatively incubated for 175 days at 5 and 15°C. The HF was equivalent to 70 ± 9% of the bulk CO2 respiration as compared to a share of 63 ± 1% of bulk OC that was stored in the HF. Significant reduction of OC mineralization was found in all treatments with increasing OC content of the HF (HF-OC), clay-size minerals and Fe or Al oxyhydroxides. Temperature sensitivity (Q10) decreased with increasing soil depth from 2.4 to 1.4 in the bulk soil and from 2.9 to 1.5 in the HF. A concurrent increase in the metal-to-HF-OC ratios with soil depth suggests a stronger bonding of OM to minerals in the subsoil. There, the younger 14 C signature in CO2 than that of the OC indicates a preferential decomposition of the more recent OM and the existence of a MOA fraction with limited access of OM to decomposers. These results indicate strong mineral controls on the decomposability of OM after permafrost thaw and on its temperature sensitivity. Thus, we here provide evidence that OM temperature sensitivity can be attenuated by MOA in permafrost soils.


Asunto(s)
Carbono/análisis , Minerales/análisis , Hielos Perennes , Suelo/química , Temperatura , Regiones Árticas , Cambio Climático , Siberia
6.
BMC Plant Biol ; 15: 78, 2015 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-25848894

RESUMEN

BACKGROUND: The species of Utricularia attract attention not only owing to their carnivorous lifestyle, but also due to an elevated substitution rate and a dynamic evolution of genome size leading to its dramatic reduction. To better understand the evolutionary dynamics of genome size and content as well as the great physiological plasticity in this mostly aquatic carnivorous genus, we analyzed the transcriptome of Utricularia vulgaris, a temperate species with well characterized physiology and ecology. We compared its transcriptome, namely gene content and overall transcript profile, with a previously described transcriptome of Utricularia gibba, a congener possessing one of the smallest angiosperm genomes. RESULTS: We sequenced a normalized cDNA library prepared from total RNA extracted from shoots of U. vulgaris including leaves and traps, cultivated under sterile or outdoor conditions. 454 pyrosequencing resulted in more than 1,400,000 reads which were assembled into 41,407 isotigs in 19,522 isogroups. We observed high transcript variation in several isogroups explained by multiple loci and/or alternative splicing. The comparison of U. vulgaris and U. gibba transcriptomes revealed a similar distribution of GO categories among expressed genes, despite the differences in transcriptome preparation. We also found a strong correspondence in the presence or absence of root-associated genes between the U. vulgaris transcriptome and U. gibba genome, which indicated that the loss of some root-specific genes had occurred before the divergence of the two rootless species. CONCLUSIONS: The species-rich genus Utricularia offers a unique opportunity to study adaptations related to the environment and carnivorous habit and also evolutionary processes responsible for considerable genome reduction. We show that a transcriptome may approximate the genome for gene content or gene duplication estimation. Our study is the first comparison of two global sequence data sets in Utricularia.


Asunto(s)
Empalme Alternativo/genética , Genoma de Planta , Magnoliopsida/genética , Homología de Secuencia de Ácido Nucleico , Transcriptoma/genética , Cartilla de ADN/metabolismo , Ontología de Genes , Genes de Plantas , Anotación de Secuencia Molecular , Especificidad de Órganos/genética , Filogenia , Raíces de Plantas/genética , Reacción en Cadena de la Polimerasa
7.
Ann Bot ; 114(1): 125-33, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24817095

RESUMEN

BACKGROUND AND AIMS: Rootless carnivorous plants of the genus Utricularia are important components of many standing waters worldwide, as well as suitable model organisms for studying plant-microbe interactions. In this study, an investigation was made of the importance of microbial dinitrogen (N2) fixation in the N acquisition of four aquatic Utricularia species and another aquatic carnivorous plant, Aldrovanda vesiculosa. METHODS: 16S rRNA amplicon sequencing was used to assess the presence of micro-organisms with known ability to fix N2. Next-generation sequencing provided information on the expression of N2 fixation-associated genes. N2 fixation rates were measured following (15)N2-labelling and were used to calculate the plant assimilation rate of microbially fixed N2. KEY RESULTS: Utricularia traps were confirmed as primary sites of N2 fixation, with up to 16 % of the plant-associated microbial community consisting of bacteria capable of fixing N2. Of these, rhizobia were the most abundant group. Nitrogen fixation rates increased with increasing shoot age, but never exceeded 1·3 µmol N g(-1) d. mass d(-1). Plant assimilation rates of fixed N2 were detectable and significant, but this fraction formed less than 1 % of daily plant N gain. Although trap fluid provides conditions favourable for microbial N2 fixation, levels of nif gene transcription comprised <0·01 % of the total prokaryotic transcripts. CONCLUSIONS: It is hypothesized that the reason for limited N2 fixation in aquatic Utricularia, despite the large potential capacity, is the high concentration of NH4-N (2·0-4·3 mg L(-1)) in the trap fluid. Resulting from fast turnover of organic detritus, it probably inhibits N2 fixation in most of the microorganisms present. Nitrogen fixation is not expected to contribute significantly to N nutrition of aquatic carnivorous plants under their typical growth conditions; however, on an annual basis the plant-microbe system can supply nitrogen in the order of hundreds of mg m(-2) into the nutrient-limited littoral zone, where it may thus represent an important N source.


Asunto(s)
Bacterias/aislamiento & purificación , Droseraceae/metabolismo , Magnoliopsida/metabolismo , Fijación del Nitrógeno , Nitrógeno/metabolismo , Compuestos de Amonio/análisis , Bacterias/genética , Bacterias/metabolismo , Secuencia de Bases , Droseraceae/microbiología , Ecología , Ecosistema , Magnoliopsida/microbiología , Datos de Secuencia Molecular , Isótopos de Nitrógeno , Brotes de la Planta/metabolismo , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN , Agua/metabolismo
8.
Soil Biol Biochem ; 75(100): 143-151, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25089062

RESUMEN

Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SOM ("priming effect"). We here report on a SOM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze-thaw processes) to additions of 13C-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SOM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SOM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SOM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SOM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SOM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SOM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased plant productivity, can change the decomposition of SOM stored in deeper layers of permafrost soils, with possible repercussions on the global climate.

9.
Soil Biol Biochem ; 67(100): 85-93, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24302785

RESUMEN

Turbic Cryosols (permafrost soils characterized by cryoturbation, i.e., by mixing of soil layers due to freezing and thawing) are widespread across the Arctic, and contain large amounts of poorly decomposed organic material buried in the subsoil. This cryoturbated organic matter exhibits retarded decomposition compared to organic material in the topsoil. Since soil organic matter (SOM) decomposition is known to be tightly linked to N availability, we investigated N transformation rates in different soil horizons of three tundra sites in north-eastern Siberia and Greenland. We measured gross rates of protein depolymerization, N mineralization (ammonification) and nitrification, as well as microbial uptake of amino acids and NH4+ using an array of 15N pool dilution approaches. We found that all sites and horizons were characterized by low N availability, as indicated by low N mineralization compared to protein depolymerization rates (with gross N mineralization accounting on average for 14% of gross protein depolymerization). The proportion of organic N mineralized was significantly higher at the Greenland than at the Siberian sites, suggesting differences in N limitation. The proportion of organic N mineralized, however, did not differ significantly between soil horizons, pointing to a similar N demand of the microbial community of each horizon. In contrast, absolute N transformation rates were significantly lower in cryoturbated than in organic horizons, with cryoturbated horizons reaching not more than 32% of the transformation rates in organic horizons. Our results thus indicate a deceleration of the entire N cycle in cryoturbated soil horizons, especially strongly reduced rates of protein depolymerization (16% of organic horizons) which is considered the rate-limiting step in soil N cycling.

10.
FEMS Microbiol Ecol ; 99(7)2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37355783

RESUMEN

Nutrient addition may change soil microbial community structure, but soil microbes must simultaneously contend with other, interacting factors. We studied the effect of soil type (peat, mineral), water level (low, high), and nutrient addition (unfertilized, fertilized) on wet grassland soil microbial community structure in both vegetated and un-vegetated soils after five years of treatment application in a mesocosm, using Illumina sequencing of the bacterial V4 region of the small ribosomal sub-units. Soil type, water level, and plant presence significantly affected the soil microbial structure, both singly and interactively. Nutrient addition did not directly impact microbiome structure, but acted indirectly by increasing plant biomass. The abundance of possible plant growth promoting bacteria and heterotrophic bacteria indicates the importance of bacteria that promote plant growth. Based on our results, a drier and warmer future would result in nutrient-richer conditions and changes to microbial community structure and total microbial biomass and/or abundances, with wet grasslands likely switching from areas acting as C sinks to C sources.


Asunto(s)
Pradera , Microbiota , Suelo/química , Microbiología del Suelo , Biomasa , Bacterias , Plantas/microbiología
11.
FEMS Microbiol Ecol ; 99(10)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37660279

RESUMEN

Substrate geochemistry is an important factor influencing early microbial development after glacial retreat on nutrient-poor geological substrates in the High Arctic. It is often difficult to separate substrate influence from climate because study locations are distant. Our study in the retreating Nordenskiöldbreen (Svalbard) is one of the few to investigate biogeochemical and microbial succession in two adjacent forefields, which share the same climatic conditions but differ in their underlying geology. The northern silicate forefield evolved in a classical chronosequence, where most geochemical and microbial parameters increased gradually with time. In contrast, the southern carbonate forefield exhibited high levels of nutrients and microbial biomass at the youngest sites, followed by a significant decline and then a gradual increase, which caused a rearrangement in the species and functional composition of the bacterial and fungal communities. This shuffling in the early stages of succession suggests that high nutrient availability in the bedrock could have accelerated early soil succession after deglaciation and thereby promoted more rapid stabilization of the soil and production of higher quality organic matter. Most chemical parameters and bacterial taxa converged with time, while fungi showed no clear pattern.


Asunto(s)
Cubierta de Hielo , Suelo , Suelo/química , Svalbard , Cubierta de Hielo/microbiología , Microbiología del Suelo , Bacterias/genética , Minerales
12.
Microorganisms ; 9(9)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576837

RESUMEN

Permafrost-affected soil stores a significant amount of organic carbon. Identifying the biological constraints of soil organic matter transformation, e.g., the interaction of major soil microbial soil organic matter decomposers, is crucial for predicting carbon vulnerability in permafrost-affected soil. Fungi are important players in the decomposition of soil organic matter and often interact in various mutualistic relationships during this process. We investigated four different soil horizon types (including specific horizons of cryoturbated soil organic matter (cryoOM)) across different types of permafrost-affected soil in the Western Canadian Arctic, determined the composition of fungal communities by sequencing (Illumina MPS) the fungal internal transcribed spacer region, assigned fungal lifestyles, and by determining the co-occurrence of fungal network properties, identified the topological role of keystone fungal taxa. Compositional analysis revealed a significantly higher relative proportion of the litter saprotroph Lachnum and root-associated saprotroph Phialocephala in the topsoil and the ectomycorrhizal close-contact exploring Russula in cryoOM, whereas Sites 1 and 2 had a significantly higher mean proportion of plant pathogens and lichenized trophic modes. Co-occurrence network analysis revealed the lowest modularity and average path length, and highest clustering coefficient in cryoOM, which suggested a lower network resistance to environmental perturbation. Zi-Pi plot analysis suggested that some keystone taxa changed their role from generalist to specialist, depending on the specific horizon concerned, Cladophialophora in topsoil, saprotrophic Mortierella in cryoOM, and Penicillium in subsoil were classified as generalists for the respective horizons but specialists elsewhere. The litter saprotrophic taxon Cadophora finlandica played a role as a generalist in Site 1 and specialist in the rest of the sites. Overall, these results suggested that fungal communities within cryoOM were more susceptible to environmental change and some taxa may shift their role, which may lead to changes in carbon storage in permafrost-affected soil.

13.
Sci Rep ; 11(1): 18677, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548501

RESUMEN

In peatlands, decomposition of organic matter is limited by harsh environmental conditions and low decomposability of the plant material. Shifting vegetation composition from Sphagnum towards vascular plants is expected in response to climate change, which will lead to increased root exudate flux to the soil and stimulation of microbial growth and activity. We aimed to evaluate the effect of root exudates on the decomposition of recalcitrant dissolved organic carbon (DOC) and to identify microorganisms involved in this process. The exudation was mimicked by an addition of a mixture of 13C labelled compounds into the recalcitrant DOC in two realistic levels; 2% and 5% of total DOC and peatland porewater with added root exudates was incubated under controlled conditions in the lab. The early stage of incubation was characterized by a relative increase of r-strategic bacteria mainly from Gammaproteobacteria and Bacteriodetes phyla within the microbial community and their preferential use of the added compounds. At the later stage, Alphaproteobacteria and Acidobacteria members were the dominating phyla, which metabolized both the transformed 13C compounds and the recalcitrant DOC. Only higher exudate input (5% of total DOC) stimulated decomposition of recalcitrant DOC compared to non-amended control. The most important taxa with a potential to decompose complex DOC compounds were identified as: Mucilaginibacter (Bacteriodetes), Burkholderia and Pseudomonas (Gammaproteobacteria) among r-strategists and Bryocella and Candidatus Solibacter (Acidobacteria) among K-strategists. We conclude that increased root exudate inputs and their increasing C/N ratio stimulate growth and degradation potential of both r-strategic and K-strategic bacteria, which make the system more dynamic and may accelerate decomposition of peatland recalcitrant DOC.


Asunto(s)
Carbono/metabolismo , Materia Orgánica Disuelta/metabolismo , Sphagnopsida/metabolismo , Bacterias/metabolismo , Cambio Climático , Microbiota , Microbiología del Suelo
14.
FEMS Microbiol Ecol ; 97(3)2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33452882

RESUMEN

Substantial amounts of topsoil organic matter (OM) in Arctic Cryosols have been translocated by the process of cryoturbation into deeper soil horizons (cryoOM), reducing its decomposition. Recent Arctic warming deepens the Cryosols´ active layer, making more topsoil and cryoOM carbon accessible for microbial transformation. To quantify bacteria, archaea and selected microbial groups (methanogens - mcrA gene and diazotrophs - nifH gene) and to investigate bacterial and archaeal diversity, we collected 83 soil samples from four different soil horizons of three distinct tundra types located in Qikiqtaruk (Hershel Island, Western Canada). In general, the abundance of bacteria and diazotrophs decreased from topsoil to permafrost, but not for cryoOM. No such difference was observed for archaea and methanogens. CryoOM was enriched with oligotrophic (slow-growing microorganism) taxa capable of recalcitrant OM degradation. We found distinct microbial patterns in each tundra type: topsoil from wet-polygonal tundra had the lowest abundance of bacteria and diazotrophs, but the highest abundance of methanogens. Wet-polygonal tundra, therefore, represented a hotspot for methanogenesis. Oligotrophic and copiotrophic (fast-growing microorganism) genera of methanogens and diazotrophs were distinctly distributed in topsoil and cryoOM, resulting in different rates of nitrogen flux into these horizons affecting OM vulnerability and potential CO2 and CH4 release.


Asunto(s)
Microbiota , Hielos Perennes , Regiones Árticas , Canadá , Islas , Suelo , Microbiología del Suelo , Tundra
15.
FEMS Microbiol Ecol ; 96(10)2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32815987

RESUMEN

Anthropogenically enhanced atmospheric sulphur (S) and nitrogen (N) deposition has acidified and eutrophied forest ecosystems worldwide. However, both S and N mechanisms have an impact on microbial communities and the consequences for microbially driven soil functioning differ. We conducted a two-forest stand (Norway spruce and European beech) field experiment involving acidification (sulphuric acid addition) and N (ammonium nitrate) loading and their combination. For 4 years, we monitored separate responses of soil microbial communities to the treatments and investigated the relationship to changes in the activity of extracellular enzymes. We observed that acidification selected for acidotolerant and oligotrophic taxa of Acidobacteria and Actinobacteria decreased bacterial community richness and diversity in both stands in parallel, disregarding their original dissimilarities in soil chemistry and composition of microbial communities. The shifts in bacterial community influenced the stoichiometry and magnitude of enzymatic activity. The bacterial response to experimental N addition was much weaker, likely due to historically enhanced N availability. Fungi were not influenced by any treatment during 4-year manipulation. We suggest that in the onset of acidification when fungi remain irresponsive, bacterial reaction might govern the changes in soil enzymatic activity.


Asunto(s)
Fagus , Suelo , Bacterias/genética , Bosques , Hongos , Concentración de Iones de Hidrógeno , Nitrógeno/análisis , Noruega , Microbiología del Suelo
16.
Environ Sci Pollut Res Int ; 26(25): 25869-25873, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31273654

RESUMEN

Ingestion of nanoparticles (NPs) with antimicrobial properties may disrupt the balance of intestinal microbiota. To investigate the effects of zinc oxide (ZnO) NPs on intestinal flora, common carp Cyprinus carpio were fed a commercial feed containing 500 mg kg-1 ZnO NPs for 6 weeks and compared to a control group receiving a similar feed-only regime. Sequencing data were analyzed both in individual fish and in pooled samples. Sequencing of 16S rRNA encoding gene of individual specimens revealed high variation in intestinal microbial composition. Assessment of pooled results can obscure high individual variation in data. ZnO NPs consumption was not associated with a significant difference in the intestinal microbial community compared to untreated controls. Our results indicated a high individual variation in the intestinal microbiome, which may further point out the importance of functional study over microbial composition to address nanomaterials-microbiome relationship.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/fisiología , ARN Ribosómico 16S/química , Óxido de Zinc/farmacología , Animales , Carpas , Alimentos , Microbiota , Nanopartículas , Óxido de Zinc/química
17.
FEMS Microbiol Ecol ; 95(9)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31425589

RESUMEN

Peatland vegetation is composed mostly of mosses, graminoids and ericoid shrubs, and these have a distinct impact on peat biogeochemistry. We studied variation in soil microbial communities related to natural peatland microhabitats dominated by Sphagnum, cotton-grass and blueberry. We hypothesized that such microhabitats will be occupied by structurally and functionally different microbial communities, which will vary further during the vegetation season due to changes in temperature and photosynthetic activity of plant dominants. This was addressed using amplicon-based sequencing of prokaryotic and fungal rDNA and qPCR with respect to methane-cycling communities. Fungal communities were highly microhabitat-specific, while prokaryotic communities were additionally directed by soil pH and total N content. Seasonal alternations in microbial community composition were less important; however, they influenced the abundance of methane-cycling communities. Cotton-grass and blueberry bacterial communities contained relatively more α-Proteobacteria but less Chloroflexi, Fibrobacteres, Firmicutes, NC10, OD1 and Spirochaetes than in Sphagnum. Methanogens, syntrophic and anaerobic bacteria (i.e. Clostridiales, Bacteroidales, Opitutae, Chloroflexi and Syntrophorhabdaceae) were suppressed in blueberry indicating greater aeration that enhanced abundance of fungi (mainly Archaeorhizomycetes) and resulted in the highest fungi-to-bacteria ratio. Thus, microhabitats dominated by different vascular plants are inhabited by unique microbial communities, contributing greatly to spatial functional diversity within peatlands.


Asunto(s)
Bacterias/aislamiento & purificación , Arándanos Azules (Planta)/crecimiento & desarrollo , Hongos/aislamiento & purificación , Poaceae/crecimiento & desarrollo , Microbiología del Suelo , Sphagnopsida/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Arándanos Azules (Planta)/microbiología , Hongos/clasificación , Hongos/genética , Hongos/metabolismo , Metano/metabolismo , Microbiota , Poaceae/microbiología , Suelo/química , Sphagnopsida/microbiología
18.
Microbiome ; 7(1): 4, 2019 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-30611307

RESUMEN

AbstractFollowing publication of the original article [1], the author reported an error in Fig. 3.

19.
Sci Rep ; 8(1): 4754, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540779

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

20.
PLoS One ; 13(4): e0195570, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29684035

RESUMEN

A survey of the ecological variability within 52 populations of Schoenoplectus californicus (C.A. Mey.) Soják across its distributional range revealed that it is commonly found in nitrogen (N) limited areas, but rarely in phosphorus limited soils. We explored the hypothesis that S. californicus supplements its nitrogen demand by bacterial N2-fixation processes associated with its roots and rhizomes. We estimated N2-fixation of diazotrophs associated with plant rhizomes and roots from several locations throughout the species' range and conducted an experiment growing plants in zero, low, and high N additions. Nitrogenase activity in rhizomes and roots was measured using the acetylene reduction assay. The presence of diazotrophs was verified by the detection of the nifH gene. Nitrogenase activity was restricted to rhizomes and roots and it was two orders of magnitude higher in the latter plant organs (81 and 2032 nmol C2H4 g DW-1 d-1, respectively). Correspondingly, 40x more nifH gene copies were found on roots compared to rhizomes. The proportion of the nifH gene copies in total bacterial DNA was positively correlated with the nitrogenase activity. In the experiment, the contribution of fixed N to the plant N content ranged from 13.8% to 32.5% among clones from different locations. These are relatively high values for a non-cultivated plant and justify future research on the link between N-fixing bacteria and S. californicus production.


Asunto(s)
Cyperaceae/metabolismo , Fijación del Nitrógeno , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Rizoma/metabolismo , Humedales , Proteínas Bacterianas/metabolismo , Cyperaceae/microbiología , Nitrógeno/química , Nitrogenasa/metabolismo , América del Norte , Oxidorreductasas/metabolismo , Fósforo/química , Fósforo/metabolismo , Dispersión de las Plantas , Proteínas de Plantas/metabolismo , Rizoma/microbiología , Suelo/química , América del Sur , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA