Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Basic Res Cardiol ; 116(1): 24, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33844095

RESUMEN

Omecamtiv mecarbil (OM) is a promising novel drug for improving cardiac contractility. We tested the therapeutic range of OM and identified previously unrecognized side effects. The Ca2+ sensitivity of isometric force production (pCa50) and force at low Ca2+ levels increased with OM concentration in human permeabilized cardiomyocytes. OM (1 µM) slowed the kinetics of contractions and relaxations and evoked an oscillation between normal and reduced intracellular Ca2+ transients, action potential lengths and contractions in isolated canine cardiomyocytes. Echocardiographic studies and left ventricular pressure-volume analyses demonstrated concentration-dependent improvements in cardiac systolic function at OM concentrations of 600-1200 µg/kg in rats. Administration of OM at a concentration of 1200 µg/kg was associated with hypotension, while doses of 600-1200 µg/kg were associated with the following aspects of diastolic dysfunction: decreases in E/A ratio and the maximal rate of diastolic pressure decrement (dP/dtmin) and increases in isovolumic relaxation time, left atrial diameter, the isovolumic relaxation constant Tau, left ventricular end-diastolic pressure and the slope of the end-diastolic pressure-volume relationship. Moreover, OM 1200 µg/kg frequently evoked transient electromechanical alternans in the rat in vivo in which normal systoles were followed by smaller contractions (and T-wave amplitudes) without major differences on the QRS complexes. Besides improving systolic function, OM evoked diastolic dysfunction and pulsus alternans. The narrow therapeutic window for OM may necessitate the monitoring of additional clinical safety parameters in clinical application.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Arritmias Cardíacas/inducido químicamente , Cardiotónicos/toxicidad , Hipotensión/inducido químicamente , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Urea/análogos & derivados , Disfunción Ventricular Izquierda/inducido químicamente , Función Ventricular Izquierda/efectos de los fármacos , Adulto , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Presión Sanguínea/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Diástole , Perros , Relación Dosis-Respuesta a Droga , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Hipotensión/metabolismo , Hipotensión/fisiopatología , Cinética , Masculino , Miocitos Cardíacos/metabolismo , Ratas Endogámicas WKY , Sístole , Urea/toxicidad , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/fisiopatología
2.
Rev Cardiovasc Med ; 22(4): 1079-1085, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34957754

RESUMEN

Although the knowledge of sports cardiology advanced significantly in the recent years, the molecular mechanisms by which exercise training augments cardiac performance is poorly understood. Here we aimed at determining left ventricular (LV) myocardial sarcomeric protein modifications in a rat model of exercise training and detraining. Young male Wistar rats were divided into exercised (Ex) and control (Co) groups. Trained rats swam 200 min/day for 12 weeks. Detrained (DEx) and control (DCo) rats remained sedentary for 8 weeks after completion of the 12-week-long protocol. Ca2+-regulated active force production (Fa⁢c⁢t⁢i⁢v⁢e), its Ca2+-sensitivity (pCa50) and Ca2+-independent passive tension (Fp⁢a⁢s⁢s⁢i⁢v⁢e) were determined in isolated permeabilized cardiomyocytes and phosphorylation levels of sarcomeric proteins were assayed by biochemical methods. Means of maximal Ca2+-activated isometric force (Fm⁢a⁢x) and pCa50 values were higher (p < 0.05) in the Ex group (28.0 ± 1.4 kN/m2 and 5.91 ± 0.03, respectively, mean ± SEM) than those in the Co group (15.8 ± 0.8 kN/m2 and 5.81 ± 0.03, respectively). Fp⁢a⁢s⁢s⁢i⁢v⁢e did not differ between these two groups. The level of cardiac troponin I (cTnI) phosphorylation decreased upon exercise (from 1.00 ± 0.02 to 0.66 ± 0.06, p < 0.05; in relative units). Site specific phosphorylation assays revealed cTnI hypophosphorylations at the protein kinase A (PKA)-specific Ser-22/23 sites and at the protein kinase C (PKC)-specific Thr-143 site. Mechanical and biochemical parameters of the DEx and DCo groups did not differ from each other following the detraining period. Exercise-induced hypertrophy is associated with reversible increases in Ca2+-dependent force production and its Ca2+-sensitivity in LV cardiomyocytes, which can be associated with changes in cTnI phosphorylation.


Asunto(s)
Sarcómeros , Troponina I , Animales , Masculino , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar , Sarcómeros/metabolismo
3.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34681724

RESUMEN

Post-ischemic left ventricular (LV) remodeling and its hypothetical prevention by repeated remote ischemic conditioning (rRIC) in male Sprague-Dawley rats were studied. Myocardial infarction (MI) was evoked by permanent ligation of the left anterior descending coronary artery (LAD), and myocardial characteristics were tested in the infarcted anterior and non-infarcted inferior LV regions four and/or six weeks later. rRIC was induced by three cycles of five-minute-long unilateral hind limb ischemia and five minutes of reperfusion on a daily basis for a period of two weeks starting four weeks after LAD occlusion. Sham operated animals served as controls. Echocardiographic examinations and invasive hemodynamic measurements revealed distinct changes in LV systolic function between four and six weeks after MI induction in the absence of rRIC (i.e., LV ejection fraction (LVEF) decreased from 52.8 ± 2.1% to 50 ± 1.6%, mean ± SEM, p < 0.05) and in the presence of rRIC (i.e., LVEF increased from 48.2 ± 4.8% to 55.2 ± 4.1%, p < 0.05). Angiotensin-converting enzyme (ACE) activity was about five times higher in the anterior LV wall at six weeks than that in sham animals. Angiotensin-converting enzyme 2 (ACE2) activity roughly doubled in post-ischemic LVs. These increases in ACE and ACE2 activities were effectively mitigated by rRIC. Ca2+-sensitivities of force production (pCa50) of LV permeabilized cardiomyocytes were increased at six weeks after MI induction together with hypophosphorylation of 1) cardiac troponin I (cTnI) in both LV regions, and 2) cardiac myosin-binding protein C (cMyBP-C) in the anterior wall. rRIC normalized pCa50, cTnI and cMyBP-C phosphorylations. Taken together, post-ischemic LV remodeling involves region-specific alterations in ACE and ACE2 activities together with changes in cardiomyocyte myofilament protein phosphorylation and function. rRIC has the potential to prevent these alterations and to improve LV performance following MI.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Carboxipeptidasas/metabolismo , Poscondicionamiento Isquémico , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Animales , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Ventrículos Cardíacos/metabolismo , Masculino , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/citología , Fosforilación , Ratas , Ratas Sprague-Dawley , Troponina I/metabolismo , Función Ventricular Izquierda/fisiología , Remodelación Ventricular
4.
J Transl Med ; 18(1): 470, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298102

RESUMEN

BACKGROUND: Cardiomyopathy is a common side effect of doxorubicin (DOX) chemotherapy. Despite intensive research efforts in the field, there is still no evidence available for routine cardioprotective prophylaxis to prevent cardiotoxicity in the majority of oncological patients at low risk of cardiovascular disease. We have recently demonstrated the advantages of a prophylactic, combined heart failure therapy in an experimental model of DOX-induced cardiomyopathy. In the current work, we focus on individually applied prophylactic medications studied in the same translational environment to clarify their distinct roles in the prevention of DOX cardiotoxicity. METHODS: Twelve-week-old male Wistar rats were divided into 5 subgroups. Prophylactic ß-blocker (BB, bisoprolol), angiotensin-converting enzyme inhibitor (ACEI, perindopril) or aldosterone antagonist (AA, eplerenone) treatments were applied 1 week before DOX administration, then 6 cycles of intravenous DOX chemotherapy were administered. Rats receiving only intravenous DOX or saline served as positive and negative controls. Blood pressure, heart rate, body weight, and echocardiographic parameters were monitored in vivo. Two months after the last DOX administration, the animals were sacrificed, and their heart and serum samples were frozen in liquid nitrogen for histological, mechanical, and biochemical measurements. RESULTS: All prophylactic treatments increased the survival of DOX-receiving animals. The lowest mortality rates were seen in the BB and ACEI groups. The left ventricular ejection fraction was only preserved in the BB group. The DOX-induced increase in the isovolumetric relaxation time could not be prevented by any prophylactic treatment. A decreased number of apoptotic nuclei and a preserved myocardial ultrastructure were found in all groups receiving prophylactic cardioprotection, while the DOX-induced fibrotic remodelling and the increase in caspase-3 levels could only be substantially prevented by the BB and ACEI treatments. CONCLUSION: Primary prophylaxis with cardioprotective agents like BB or ACEI has a key role in the prevention of DOX-induced cardiotoxicity in healthy rats. Future human studies are necessary to implement this finding in the clinical management of oncological patients free of cardiovascular risk factors.


Asunto(s)
Cardiomiopatías , Preparaciones Farmacéuticas , Animales , Doxorrubicina/efectos adversos , Humanos , Masculino , Ratas , Ratas Wistar , Volumen Sistólico , Función Ventricular Izquierda
5.
J Mol Cell Cardiol ; 129: 208-218, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30844361

RESUMEN

AIM: Here we aimed at investigating the relation between left ventricular (LV) contractility and myofilament function during the development and progression of pressure overload (PO)-induced LV myocardial hypertrophy (LVH). METHODS: Abdominal aortic banding (AB) was performed to induce PO in rats for 6, 12 and 18 weeks. Sham operated animals served as controls. Structural and molecular alterations were investigated by serial echocardiography, histology, quantitative real-time PCR and western blot. LV function was assessed by pressure-volume analysis. Force measurement was carried out in permeabilized cardiomyocytes. RESULTS: AB resulted in the development of pathological LVH as indicated by increased heart weight-to-tibial length ratio, LV mass index, cardiomyocyte diameter and fetal gene expression. These alterations were already present at early stage of LVH (AB-week6). Furthermore, at more advanced stages (AB-week12, AB-week18), myocardial fibrosis and chamber dilatation were also observed. From a hemodynamic point of view, the AB-wk6 group was associated with increased LV contractility, maintained ventriculo-arterial coupling (VAC) and preserved systolic function. In the same experimental group, increased myofilament Ca2+ sensitivity (pCa50) and hyperphosphorylation of cardiac troponin-I (cTnI) at Threonine-144 was detected. In contrast, in the AB-wk12 and AB-wk18 groups, the initial augmentation of LV contractility, as well as the increased myofilament Ca2+ sensitivity and cTnI (Threonine-144) hyperphosphorylation diminished, leading to impaired VAC and reduced systolic performance. Strong correlation was found between LV contractility parameters and myofilament Ca2+-sensitivity among the study groups. CONCLUSION: Changes in myofilament Ca2+ sensitivity might underlie the alterations in LV contractility during the development and progression of PO-induced LVH.


Asunto(s)
Calcio/metabolismo , Progresión de la Enfermedad , Hipertrofia Ventricular Izquierda/fisiopatología , Contracción Miocárdica , Miofibrillas/metabolismo , Presión , Función Ventricular Izquierda , Animales , Arterias/fisiopatología , Biomarcadores/metabolismo , Proteínas Portadoras/metabolismo , Diástole , Fibrosis , Hipertrofia Ventricular Izquierda/diagnóstico por imagen , Masculino , Fosforilación , Ratas Sprague-Dawley , Sístole , Troponina I/metabolismo
6.
J Transl Med ; 17(1): 229, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324258

RESUMEN

BACKGROUND: Chemotherapy-induced left ventricular dysfunction represents a major clinical problem, which is often only recognised at an advanced stage, when supportive therapy is ineffective. Although an early heart failure treatment could positively influence the health status and clinical outcome, there is still no evidence of routine prophylactic cardioprotection for the majority of patients without previous cardiovascular history awaiting potentially cardiotoxic chemotherapy. In this study, we set out to investigate whether a prophylactic cardioprotective therapy relative to a conventionally scheduled heart failure treatment is more effective in preventing cardiotoxicity in a rodent model of doxorubicin (DOX)-induced cardiomyopathy. METHODS: Male Wistar rats (n = 7-11 per group) were divided into 4 subgroups, namely negative controls receiving intravenous saline (CON), positive controls receiving intravenous DOX (6 cycles; D-CON), and DOX-treated animals receiving either prophylactic (PRE, started 1 week before DOX) or conventionally applied (POST, started 1 month after DOX) combined heart failure therapy of oral bisoprolol, perindopril and eplerenone. Blood pressure, heart rate, body weight and echocardiographic parameters were monitored in vivo, whereas myocardial fibrosis, capillarisation, ultrastructure, myofilament function, apoptosis, oxidative stress and mitochondrial biogenesis were studied in vitro. RESULTS: The survival rate in the PRE group was significantly improved compared to D-CON (p = 0.0207). DOX increased the heart rate of the animals (p = 0.0193), while the blood pressure (p ≤ 0.0105) and heart rate (p = 0.0029) were significantly reduced in the PRE group compared to D-CON and POST. The ejection fraction remained preserved in the PRE group compared to D-CON or POST (p ≤ 0.0237), while none of the treatments could prevent the DOX-induced increase in the isovolumetric relaxation time. DOX decreased the rate of the actin-myosin cross-bridge cycle, irrespective of any treatment applied (p ≤ 0.0433). The myocardium of the D-CON and POST animals displayed pronounced ultrastructural damage, which was not apparent in the PRE group (p ≤ 0.033). While the DOX-induced apoptotic activity could be reduced in both the PRE and POST groups (p ≤ 0.0433), no treatment was able to prevent fibrotic remodelling or the disturbed mitochondrial biogenesis. CONCLUSION: For attenuating DOX-induced adverse myocardial effects, prophylactic cardioprotection has many advantages compared to a late-applied treatment.


Asunto(s)
Cardiomiopatías/inducido químicamente , Cardiomiopatías/terapia , Doxorrubicina/efectos adversos , Insuficiencia Cardíaca/terapia , Animales , Apoptosis , Cardiomiopatías/diagnóstico por imagen , Caspasa 3/metabolismo , Modelos Animales de Enfermedad , Ecocardiografía , Fibrosis , Insuficiencia Cardíaca/diagnóstico por imagen , Masculino , Miocardio/patología , Miocardio/ultraestructura , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas Wistar , Análisis de Supervivencia
7.
Am J Physiol Heart Circ Physiol ; 310(11): H1671-82, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27059079

RESUMEN

Hypertension (HTN) is a major risk factor for heart failure. We investigated the influence of HTN on cardiac contraction and relaxation in transgenic renin overexpressing rats (carrying mouse Ren-2 renin gene, mRen2, n = 6). Blood pressure (BP) was measured. Cardiac contractility was characterized by echocardiography, cellular force measurements, and biochemical assays were applied to reveal molecular mechanisms. Sprague-Dawley (SD) rats (n = 6) were used as controls. Transgenic rats had higher circulating renin activity and lower cardiac angiotensin-converting enzyme two levels. Systolic BP was elevated in mRen2 rats (235.11 ± 5.32 vs. 127.03 ± 7.56 mmHg in SD, P < 0.05), resulting in increased left ventricular (LV) weight/body weight ratio (4.05 ± 0.09 vs. 2.77 ± 0.08 mg/g in SD, P < 0.05). Transgenic renin expression had no effect on the systolic parameters, such as LV ejection fraction, cardiomyocyte Ca(2+)-activated force, and Ca(2+) sensitivity of force production. In contrast, diastolic dysfunction was observed in mRen2 compared with SD rats: early and late LV diastolic filling ratio (E/A) was lower (1.14 ± 0.04 vs. 1.87 ± 0.08, P < 0.05), LV isovolumetric relaxation time was longer (43.85 ± 0.89 vs. 28.55 ± 1.33 ms, P < 0.05), cardiomyocyte passive tension was higher (1.74 ± 0.06 vs. 1.28 ± 0.18 kN/m(2), P < 0.05), and lung weight/body weight ratio was increased (6.47 ± 0.24 vs. 5.78 ± 0.19 mg/g, P < 0.05), as was left atrial weight/body weight ratio (0.21 ± 0.03 vs. 0.14 ± 0.03 mg/g, P < 0.05). Hyperphosphorylation of titin at Ser-12742 within the PEVK domain and a twofold overexpression of protein kinase C-α in mRen2 rats were detected. Our data suggest a link between the activation of renin-angiotensin-aldosterone system and increased titin-based stiffness through phosphorylation of titin's PEVK element, contributing to diastolic dysfunction.


Asunto(s)
Conectina/metabolismo , Hipertensión/metabolismo , Sistema Renina-Angiotensina/fisiología , Renina/metabolismo , Disfunción Ventricular/metabolismo , Animales , Hipertensión/genética , Hipertensión/fisiopatología , Miocitos Cardíacos/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Renina/genética , Disfunción Ventricular/genética , Disfunción Ventricular/fisiopatología
8.
Croat Med J ; 55(3): 239-49, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24891282

RESUMEN

AIM: To assess how ovarian-derived sex hormones (in particular progesterone) modify the effects of single acute stress on the mechanical and biochemical properties of left ventricular cardiomyocytes in the rat. METHODS: Non-ovariectomized (control, n=8) and ovariectomized (OVX, n=8) female rats were kept under normal conditions or were exposed to stress (control-S, n=8 and OVX-S, n=8). Serum progesterone levels were measured using a chemiluminescent immunoassay. Left ventricular myocardial samples were used for isometric force measurements and protein analysis. Ca(2+)-dependent active force (Factive), Ca(2+)-independent passive force (Fpassive), and Ca(2+)-sensitivity of force production were determined in single, mechanically isolated, permeabilized cardiomyocytes. Stress- and ovariectomy-induced alterations in myofilament proteins (myosin-binding protein C [MyBP-C], troponin I [TnI], and titin) were analyzed by sodium dodecyl sulfate gel electrophoresis using protein and phosphoprotein stainings. RESULTS: Serum progesterone levels were significantly increased in stressed rats (control-S, 35.6±4.8 ng/mL and OVX-S, 21.9±4.0 ng/mL) compared to control (10±2.9 ng/mL) and OVX (2.8±0.5 ng/mL) groups. Factive was higher in the OVX groups (OVX, 25.9±3.4 kN/m(2) and OVX-S, 26.3±3.0 kN/m(2)) than in control groups (control, 16.4±1.2 kN/m(2) and control-S, 14.4±0.9 kN/m(2)). Regarding the potential molecular mechanisms, Factive correlated with MyBP-C phosphorylation, while myofilament Ca(2+)-sensitivity inversely correlated with serum progesterone levels when the mean values were plotted for all animal groups. Fpassive was unaffected by any treatment. CONCLUSION: Stress increases ovary-independent synthesis and release of progesterone, which may regulate Ca(2+)-sensitivity of force production in left ventricular cardiomyocytes. Stress and female hormones differently alter Ca(2+)-dependent cardiomyocyte contractile force production, which may have pathophysiological importance during stress conditions affecting postmenopausal women.


Asunto(s)
Estrógenos/sangre , Miocitos Cardíacos/fisiología , Ovariectomía , Ovario/fisiología , Progesterona/sangre , Estrés Fisiológico , Animales , Proteínas Portadoras/metabolismo , Electroforesis en Gel de Poliacrilamida , Femenino , Ventrículos Cardíacos , Humanos , Mediciones Luminiscentes , Fosforilación , Ratas , Ratas Sprague-Dawley , Troponina I/metabolismo
9.
Pharmacol Res Perspect ; 11(3): e01091, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37190667

RESUMEN

Previous investigations have demonstrated that treatment of animals with rapamycin increases levels of autophagy, which is a process by which cells degrade intracellular detritus, thus suppressing the emergence of senescent cells, whose pro-inflammatory properties, are primary drivers of age-associated physical decline. A hypothesis is tested here that rapamycin treatment of mice approaching the end of their normal lifespan exhibits increased survival, enhanced expression of autophagic proteins; and klotho protein-a biomarker of aging that affects whole organism senescence, and systemic suppression of inflammatory mediator production. Test groups of 24-month-old C57BL mice were injected intraperitoneally with either 1.5 mg/kg/week rapamycin or vehicle. All mice administered rapamycin survived the 12-week course, whereas 43% of the controls died. Relative to controls, rapamycin-treated mice experienced minor but significant weight loss; moreover, nonsignificant trends toward decreased levels of leptin, IL-6, IL-1ß, TNF-α, IL-1α, and IGF-1, along with slight elevations in VEGF, MCP-1 were observed in the blood serum of rapamycin-treated mice. Rapamycin-treated mice exhibited significantly enhanced autophagy and elevated expression of klotho protein, particularly in the kidney. Rapamycin treatment also increased cardiomyocyte Ca2+ -sensitivity and enhanced the rate constant of force re-development, which may also contribute to the enhanced survival rate in elderly mice.


Asunto(s)
Proteínas Klotho , Sirolimus , Ratones , Animales , Sirolimus/farmacología , Ratones Endogámicos C57BL , Envejecimiento , Biomarcadores , Autofagia
10.
Antioxidants (Basel) ; 10(11)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34829647

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) and right ventricular (RV) dysfunction are frequent complications of diabetic cardiomyopathy. Here we aimed to characterize RV and left ventricular (LV) remodeling and its prevention by vardenafil (a long-acting phosphodiesterase-5A (PDE-5A) inhibitor) administration in a diabetic HFpEF model. Zucker Diabetic Fatty (ZDF) and control, ZDF Lean (Lean) male rats received 10 mg/kg vardenafil (ZDF + Vard; Lean + Vard) per os, on a daily basis for a period of 25 weeks. In vitro force measurements, biochemical and histochemical assays were employed to assess cardiomyocyte function and signaling. Vardenafil treatment increased cyclic guanosine monophosphate (cGMP) levels and decreased 3-nitrotyrosine (3-NT) levels in the left and right ventricles of ZDF animals, but not in Lean animals. Cardiomyocyte passive tension (Fpassive) was higher in LV and RV cardiomyocytes of ZDF rats than in those receiving preventive vardenafil treatment. Levels of overall titin phosphorylation did not differ in the four experimental groups. Maximal Ca2+-activated force (Fmax) of LV and RV cardiomyocytes were preserved in ZDF animals. Ca2+-sensitivity of isometric force production (pCa50) was significantly higher in LV (but not in RV) cardiomyocytes of ZDF rats than in their counterparts in the Lean or Lean + Vard groups. In accordance, the phosphorylation levels of cardiac troponin I (cTnI) and myosin binding protein-C (cMyBP-C) were lower in LV (but not in RV) cardiomyocytes of ZDF animals than in their counterparts of the Lean or Lean + Vard groups. Vardenafil treatment normalized pCa50 values in LV cardiomyocytes, and it decreased pCa50 below control levels in RV cardiomyocytes in the ZDF + Vard group. Our data illustrate partially overlapping myofilament protein alterations for LV and RV cardiomyocytes in diabetic rat hearts upon long-term PDE-5A inhibition. While uniform patterns in cGMP, 3-NT and Fpassive levels predict identical effects of vardenafil therapy for the diastolic function in both ventricles, the uneven cTnI, cMyBP-C phosphorylation levels and pCa50 values implicate different responses for the systolic function.

11.
Antioxidants (Basel) ; 10(6)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208541

RESUMEN

Standard heart failure (HF) therapies have failed to improve cardiac function or survival in HF patients with right ventricular (RV) dysfunction suggesting a divergence in the molecular mechanisms of RV vs. left ventricular (LV) failure. Here we aimed to investigate interventricular differences in sarcomeric regulation and function in experimental myocardial infarction (MI)-induced HF with reduced LV ejection fraction (HFrEF). MI was induced by LAD ligation in Sprague-Dawley male rats. Sham-operated animals served as controls. Eight weeks after intervention, post-ischemic HFrEF and Sham animals were euthanized. Heart tissue samples were deep-frozen stored (n = 3-5 heart/group) for ELISA, kinase activity assays, passive stiffness and Ca2+-sensitivity measurements on isolated cardiomyocytes, phospho-specific Western blot, and PAGE of contractile proteins, as well as for collagen gene expressions. Markers of oxidative stress and inflammation showed interventricular differences in post-ischemic rats: TGF-ß1, lipid peroxidation, and 3-nitrotyrosine levels were higher in the LV than RV, while hydrogen peroxide, VCAM-1, TNFα, and TGF-ß1 were increased in both ventricles. In addition, nitric oxide (NO) level was significantly decreased, while FN-1 level was significantly increased only in the LV, but both were unchanged in RV. CaMKII activity showed an 81.6% increase in the LV, in contrast to a 38.6% decrease in the RV of HFrEF rats. Cardiomyocyte passive stiffness was higher in the HFrEF compared to the Sham group as evident from significantly steeper Fpassive vs. sarcomere length relationships. In vitro treatment with CaMKIIδ, however, restored cardiomyocyte passive stiffness only in the HFrEF RV, but had no effect in the HFrEF LV. PKG activity was lower in both ventricles in the HFrEF compared to the Sham group. In vitro PKG administration decreased HFrEF cardiomyocyte passive stiffness; however, the effect was more pronounced in the HFrEF LV than HFrEF RV. In line with this, we observed distinct changes of titin site-specific phosphorylation in the RV vs. LV of post-ischemic rats, which may explain divergent cardiomyocyte stiffness modulation observed. Finally, Ca2+-sensitivity of RV cardiomyocytes was unchanged, while LV cardiomyocytes showed increased Ca2+-sensitivity in the HFrEF group. This could be explained by decreased Ser-282 phosphorylation of cMyBP-C by 44.5% in the RV, but without any alteration in the LV, while Ser-23/24 phosphorylation of cTnI was decreased in both ventricles in the HFrEF vs. the Sham group. Our data pointed to distinct signaling pathways-mediated phosphorylations of sarcomeric proteins for the RV and LV of the post-ischemic failing rat heart. These results implicate divergent responses for oxidative stress and open a new avenue in targeting the RV independently of the LV.

12.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(11): 1399-1412, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30077797

RESUMEN

There is a growing body of evidence that poly(ADP-ribose) polymerase-2 (PARP2), although originally described as a DNA repair protein, has a widespread role as a metabolic regulator. We show that the ablation of PARP2 induced characteristic changes in the lipidome. The silencing of PARP2 induced the expression of sterol regulatory element-binding protein-1 and -2 and initiated de novo cholesterol biosynthesis in skeletal muscle. Increased muscular cholesterol was shunted to muscular biosynthesis of dihydrotestosterone, an anabolic steroid. Thus, skeletal muscle fibers in PARP2-/- mice were stronger compared to those of their wild-type littermates. In addition, we detected changes in the dynamics of the cell membrane, suggesting that lipidome changes also affect the biophysical characteristics of the cell membrane. In in silico and wet chemistry studies, we identified lipid species that can decrease the expression of PARP2 and potentially phenocopy the genetic abruption of PARP2, including artificial steroids. In view of these observations, we propose a new role for PARP2 as a lipid-modulated regulator of lipid metabolism.


Asunto(s)
Colesterol/metabolismo , Técnicas de Inactivación de Genes , Músculo Esquelético/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Animales , Línea Celular , Membrana Celular/metabolismo , Dihidrotestosterona/metabolismo , Homeostasis , Metabolismo de los Lípidos , Masculino , Ratones , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ratas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
13.
Free Radic Biol Med ; 113: 224-235, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28943453

RESUMEN

During the perinatal adaptation process N2BA titin isoforms are switched for N2B titin isoforms leading to an increase in cardiomyocyte passive tension (Fpassive). Here we attempted to reveal how titin isoform composition and oxidative insults (i.e. sulfhydryl (SH)-group oxidation or carbonylation) influence Fpassive of left ventricular (LV) cardiomyocytes during rat heart development. Moreover, we also examined a hypothetical protective role for titin associated small heat shock proteins (sHSPs), Hsp27 and αB-crystallin in the above processes. Single, permeabilized LV cardiomyocytes of the rat (at various ages following birth) were exposed either to 2,2'-dithiodipyridine (DTDP) to provoke SH-oxidation or Fenton reaction reagents (iron(II), hydrogen peroxide (H2O2), ascorbic acid) to induce protein carbonylation of cardiomyocytes in vitro. Thereafter, cardiomyocyte force measurements for Fpassive determinations and Western immunoblot assays were carried out for the semiquantitative determination of oxidized SH-groups or carbonyl-groups of titin isoforms and to monitor sHSPs' expressions. DTDP or Fenton reagents increased Fpassive in 0- and 7-day-old rats to relatively higher extents than in 21-day-old and adult animals. The degrees of SH-group oxidation or carbonylation declined with cardiomyocyte age to similar extents for both titin isoforms. Moreover, the above characteristics were mirrored by increasing levels of HSP27 and αB-crystallin expressions during cardiomyocyte development. Our data implicate a gradual build-up of a protective mechanism against titin oxidation through the upregulation of HSP27 and αB-crystallin expressions during postnatal cardiomyocyte development.


Asunto(s)
Conectina/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Animales , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/toxicidad , Hierro/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Isoformas de Proteínas , Ratas
14.
Eur J Heart Fail ; 19(3): 326-336, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27995696

RESUMEN

AIMS: Heart failure with preserved ejection fraction (HFpEF) has a great epidemiological burden. The pathophysiological role of cyclic guanosine monophosphate (cGMP) signalling has been intensively investigated in HFpEF. Elevated levels of cGMP have been shown to exert cardioprotective effects in various cardiovascular diseases, including diabetic cardiomyopathy. We investigated the effect of long-term preventive application of the phosphodiesterase-5A (PDE5A) inhibitor vardenafil in diabetic cardiomyopathy-associated HFpEF. METHODS AND RESULTS: Zucker diabetic fatty (ZDF) rats were used as a model of HFpEF and ZDF lean rats served as controls. Animals received vehicle or 10 mg/kg body weight vardenafil per os from weeks 7 to 32 of age. Cardiac function, morphology was assessed by left ventricular (LV) pressure-volume analysis and echocardiography at week 32. Cardiomyocyte force measurements were performed. The key markers of cGMP signalling, nitro-oxidative stress, apoptosis, myocardial hypertrophy and fibrosis were examined. The ZDF animals showed diastolic dysfunction (increased LV/cardiomyocyte stiffness, prolonged LV relaxation time), preserved systolic performance, decreased myocardial cGMP level coupled with impaired protein kinase G (PKG) activity, increased nitro-oxidative stress, enhanced cardiomyocyte apoptosis, and hypertrophic and fibrotic remodelling of the myocardium. Vardenafil effectively prevented the development of HFpEF by maintaining diastolic function (decreased LV/cardiomyocyte stiffness and LV relaxation time), by restoring cGMP levels and PKG activation, by lowering apoptosis and by alleviating nitro-oxidative stress, myocardial hypertrophy and fibrotic remodelling. CONCLUSIONS: We report that vardenafil successfully prevented the development of diabetes mellitus-associated HFpEF. Thus, PDE5A inhibition as a preventive approach might be a promising option in the management of HFpEF patients with diabetes mellitus.


Asunto(s)
Apoptosis/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Insuficiencia Cardíaca/prevención & control , Corazón/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/farmacología , Diclorhidrato de Vardenafil/farmacología , Animales , Cardiomegalia/prevención & control , GMP Cíclico/metabolismo , Ecocardiografía , Fibrosis , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/fisiopatología , Miocardio/patología , Ratas , Ratas Zucker , Volumen Sistólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA