Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Nutr ; 59(1): 137-150, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30710163

RESUMEN

PURPOSE: Hibiscus sabdariffa L. is commonly used as an ingredient for herbal teas and food supplements. Several studies demonstrated the beneficial effects of Hibiscus sabdariffa L. extracts (HSE); however, the bioactive components and their mode of action still remain unclear. Caenorhabditis elegans (C. elegans) was used to study health-related effects and the underlying molecular mechanisms of HSE in this model organism as well as effects of hydroxycitric acid (HCA), a main compound of HSE, and its structural analogue isocitric acid (ICA). METHODS: Survival and locomotion were detected by touch-provoked movement. Thermotolerance was analysed using the nucleic acid stain SYTOX green, and intracellular ROS accumulation was measured via oxidation of H2DCF. Localisation of the transcription factors DAF-16 and SKN-1 was analysed in transgenic strains (DAF-16::GFP, SKN-1::GFP). The involvement of DAF-16 and SKN-1 was further investigated using loss-of-function strains as well as gene silencing by feeding RNAi-inducing bacteria. Protection against amyloid-ß toxicity was analysed using a transgenic strain with an inducible expression of human amyloid-ß peptides in body wall muscle cells (paralysis assay). RESULTS: HSE treatment resulted in a prominent extension of lifespan (up to 24%) and a reduction of the age-dependent decline in locomotion. HCA, a main compound of HSE increased lifespan too, but to a lesser extent (6%) while ICA was not effective. HSE and HCA did not modulate resistance against thermal stress conditions and did not exert antioxidative effects: HSE rather increased intracellular ROS levels, suggesting a pro-oxidative effect of the extract in vivo. HSE and HCA increased the nuclear localisation of the pivotal transcription factors DAF-16 and SKN-1 indicating an activation of these factors. Consistent with this result, lifespan prolongation by HSE was dependent on both transcription factors. In addition to the positive effect on lifespan, HSE treatment also elicited a (strong) protection against amyloid-ß induced toxicity in C. elegans in a DAF-16- and SKN-1-dependent manner. CONCLUSION: Our results demonstrate that HSE increases lifespan and protects against amyloid-ß toxicity in the model organism C. elegans. These effects were mediated, at least in parts via modulation of pathways leading to activation/nuclear localisation of DAF-16 and SKN-1. Since HCA, a main component of HSE causes only minor effects, additional bioactive compounds like flavonoids or anthocyanins as well as synergistic effects of these compounds should be investigated.


Asunto(s)
Péptidos beta-Amiloides/efectos de los fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción Forkhead/metabolismo , Hibiscus , Longevidad/fisiología , Extractos Vegetales/farmacología , Factores de Transcripción/metabolismo , Animales , Antioxidantes/farmacología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/efectos de los fármacos , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/efectos de los fármacos , Proteínas de Unión al ADN/genética , Factores de Transcripción Forkhead/efectos de los fármacos , Factores de Transcripción Forkhead/genética , Longevidad/efectos de los fármacos , Modelos Animales , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/genética
2.
Eur J Nutr ; 55(1): 257-65, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25644181

RESUMEN

PURPOSE: The flavanone isoxanthohumol (IX) has gained attention as antioxidative and chemopreventive agent, but the molecular mechanism of action remains unclear. We investigated effects of this secondary plant compound in vivo using the model organism Caenorhabditis elegans. METHODS: Adult C. elegans nematodes were incubated with IX, and then, the stress resistance was analysed in the SYTOX assay; lifespan was monitored by touch-provoked movement method, the amount of reactive oxygen species (ROS) was measured in the DCF assay, and the nuclear localisation of the transcription factor DAF-16 was analysed by using a transgenic strain. By the use of a DAF-16 loss-of-function strain, we analysed whether the effects are dependent on DAF-16. RESULTS: IX increases the resistance of the nematode against thermal stress. Additionally, a reduction in ROS in vivo was caused by IX. Since the flavanone only has a marginal radical-scavenging capacity (TEAC assay), we suggest that IX mediates its antioxidative effects indirectly via activation of DAF-16 (homologue to mammalian FOXO proteins). The nuclear translocation of this transcription factor is increased by IX. In the DAF-16-mutated strain, the IX-mediated increase in stress resistance was completely abolished; furthermore, an increased formation of ROS and a reduced lifespan was mediated by IX. CONCLUSION: IX or a bacterial metabolite of IX causes antioxidative effects as well as an increased stress resistance in C. elegans via activation of DAF-16. The homologous pathway may have implications in the molecular mechanism of IX in mammals.


Asunto(s)
Antioxidantes/farmacología , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/efectos de los fármacos , Factores de Transcripción Forkhead/genética , Humulus/química , Xantonas/farmacología , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Flavanonas/farmacología , Factores de Transcripción Forkhead/metabolismo , Longevidad/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
3.
Phytother Res ; 29(6): 894-901, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25826281

RESUMEN

The lignan pinoresinol is a constituent of flaxseed, sesame seeds and olive oil. Because of different molecular effects reported for this compound, e.g. antioxidative activity, pinoresinol is suggested to cause positive effects on humans. Because experimental data are limited, we have analysed the effects of the lignan on the nematode Caenorhabditis elegans: in spite of a strong antioxidative capacity detected in an in vitro assay, no antioxidative effects were detectable in vivo. In analogy to this result, no modulation of the sensitivity against thermal stress was detectable. However, incubation with pinoresinol caused an enhanced nuclear accumulation of the transcription factor DAF-16 (insulin/IGF-like signalling pathway). Using a strain with an enhanced oxidative stress level (mev-1 mutant), we clearly see an increase in stress resistance caused by this lignan, but no change in reactive oxygen species. Furthermore, we investigated the effects of pinoresinol on the life span of the nematode, but no modulation was found, neither in wild-type nor in mev-1 mutant nematodes. These results suggest that pinoresinol may exert pharmacologically interesting effects via modulation of the insulin-like signalling pathway in C. elegans as well as in other species like mammals due to the evolutionary conservation of this signalling pathway.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Factores de Transcripción Forkhead/metabolismo , Furanos/farmacología , Lignanos/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Núcleo Celular/metabolismo , Depuradores de Radicales Libres/farmacología , Longevidad/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Temperatura
4.
ScientificWorldJournal ; 2014: 920398, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24895670

RESUMEN

Flavonoids are secondary plant compounds that mediate diverse biological activities, for example, by scavenging free radicals and modulating intracellular signalling pathways. It has been shown in various studies that distinct flavonoid compounds enhance stress resistance and even prolong the life span of organisms. In the last years the model organism C. elegans has gained increasing importance in pharmacological and toxicological sciences due to the availability of various genetically modified nematode strains, the simplicity of modulating genes by RNAi, and the relatively short life span. Several studies have been performed demonstrating that secondary plant compounds influence ageing, stress resistance, and distinct signalling pathways in the nematode. Here we present an overview of the modulating effects of different flavonoids on oxidative stress, redox-sensitive signalling pathways, and life span in C. elegans introducing the usability of this model system for pharmacological and toxicological research.


Asunto(s)
Caenorhabditis elegans/metabolismo , Envejecimiento/fisiología , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Flavonoides/farmacología , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
Int J Mol Sci ; 14(6): 11895-914, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23736695

RESUMEN

Myricetin is a naturally occurring flavonol found in many plant based food sources. It increases the lifespan of Caenorhabditis elegans, but the molecular mechanisms are not yet fully understood. We have investigated the impact of this flavonoid on the transcription factors DAF-16 (C. elegans FoxO homologue) and SKN-1 (Nrf2 homologue), which have crucial functions in the regulation of ageing. Myricetin is rapidly assimilated by the nematode, causes a nuclear translocation of DAF-16 but not of SKN-1, and finally prolongs the mean adult lifespan of C. elegans by 32.9%. The lifespan prolongation was associated with a decrease in the accumulation of reactive oxygen species (ROS) detected by DCF. Myricetin also decreases the formation of lipofuscin, a pigment consisting of highly oxidized and cross-linked proteins that is considered as a biomarker of ageing in diverse species. The lifespan extension was completely abolished in a daf-16 loss-of-function mutant strain (CF1038). Consistently with this result, myricetin was also not able to diminish stress-induced ROS accumulation in the mutant. These results strongly indicate that the pro-longevity effect of myricetin is dependent on DAF-16 and not on direct anti-oxidative effects of the flavonoid.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Flavonoides/farmacología , Factores de Transcripción Forkhead/metabolismo , Longevidad/efectos de los fármacos , Animales , Antioxidantes/farmacología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Restricción Calórica , Sistema Libre de Células , Cromanos , Proteínas de Unión al ADN/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Depuradores de Radicales Libres/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Células HCT116 , Calor , Humanos , Lipofuscina/metabolismo , Oxidación-Reducción/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/metabolismo
6.
Toxicol Lett ; 334: 102-109, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002525

RESUMEN

Beauvericin is an ubiquitous mycotoxin with relevant occurrence in food and feed. It causes a high toxicity in several cell lines, but its general mechanism of action is not fully understood and only limited in vivo studies have been performed. We used Caenorhabditis elegans as a model organism to investigate effects of beauvericin. The mycotoxin displays a moderate acute toxicity at 100 µM; at this concentration also reproductive toxicity occurred (reduction of total progeny to 32.1 %), developmental toxicity was detectable at 250 µM. However, even lower concentrations were capable to reduce stress resistance and life span of the nematode: A significant reduction was detected at 10 µM beauvericin (decrease in mean survival time of 4.3 % and reduction in life span of 12.9 %). An increase in lipofuscin fluorescence was demonstrated starting at 10 µM suggesting oxidative stress as a mechanism of beauvericin toxicity. Beauvericin (100 µM) increases the number of apoptotic germ cells comparable to the positive control UV-C (400 J/m2). Conclusion: Low concentrations of beauvericin are capable to cause adverse effects in C. elegans, which may be relevant for hazard identification of this compound.


Asunto(s)
Apoptosis/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Depsipéptidos/toxicidad , Células Germinativas/efectos de los fármacos , Lipofuscina/metabolismo , Longevidad/efectos de los fármacos , Micotoxinas/toxicidad , Animales , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Relación Dosis-Respuesta a Droga , Fertilidad/efectos de los fármacos , Contaminación de Alimentos , Células Germinativas/patología , Actividad Motora/efectos de los fármacos , Pruebas de Toxicidad Aguda
7.
J Pharm Pharmacol ; 71(6): 1007-1016, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30793315

RESUMEN

OBJECTIVES: Recent studies showed that distinct extracts of Erythrina species used in the traditional medicine of sub-Saharan Africa are protective against stress conditions. However, the underlying molecular mechanisms as well as relevant compounds remain unclear. METHODS: We used the model organism Caenorhabditis elegans to investigate compounds isolated from the stem bark of Erythrina melanacantha (abyssinone V (1), abyssinon-4'O-methylether (2), sigmoidin B-4'O-methylether (3), glabranin (4), 8-prenylnaringenin (5), citflavanone (6), exiguaflavanone (7) and homoeriodictyol (8)). Antioxidative capacity in vitro (trolox equivalent antioxidative capacity assay) and modulation of oxidative stress in vivo (2', 7'-dichlorofluorescein assay) were investigated; stress resistance was analysed using the nucleic acid stain SYTOX green. KEY FINDINGS: None of the prenylated flavonoids caused protection against thermal stress; in contrast, most of the compounds (1, 4, 5, 8) decreased stress resistance. None of the compounds decreased the accumulation of reactive oxygen species, but abyssinone V (1) caused an increase in oxidative stress. In line with these results, none of these compounds showed radical-scavenging effects in vitro. CONCLUSIONS: The stem bark of E. melanacantha contains various prenylated flavonoids, but no compound protected C. elegans against stress conditions. In contrast, abyssinone V increases oxidative stress and reduces stress resistance in this model organism.


Asunto(s)
Erythrina/química , Flavonoides/farmacología , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , África del Sur del Sahara , Animales , Antioxidantes/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Flavonoides/aislamiento & purificación , Medicinas Tradicionales Africanas/métodos , Corteza de la Planta , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo
8.
Plants (Basel) ; 7(3)2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30036983

RESUMEN

Extracts of the Chinese plant Polygonum multiflorum (PME) are used for medicinal purposes as well as food supplement due to anti-aging effects. Despite of the common use of these food supplements, experimental data on physiological effects of PME and its underlying molecular mechanisms in vivo are limited. We used the model organism Caenorhabditis elegans to analyze anti-aging-effects of PME in vivo (life span, lipofuscin accumulation, oxidative stress resistance, thermal stress resistance) as well as the molecular signaling pathways involved. The effects of PME were examined in wildtype animals and mutants defective in the sirtuin-homologue SIR-2.1 (VC199) and the FOXO-homologue DAF-16 (CF1038). PME possesses antioxidative effects in vivo and increases oxidative stress resistance of the nematodes. While the accumulation of lipofuscin is only slightly decreased, PME causes a significant elongation (18.6%) of mean life span. DAF-16 is essential for the reduction of thermally induced ROS accumulation, while the resistance against paraquat-induced oxidative stress is dependent on SIR-2.1. For the extension of the life span, both DAF-16 and SIR-2.1 are needed. We demonstrate that PME exerts protective effects in C. elegans via modulation of distinct intracellular pathways.

9.
J Pharm Pharmacol ; 69(1): 73-81, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27882602

RESUMEN

OBJECTIVES: Resveratrol (trans-3,4',5-trihydroxystilbene (1)) was previously shown to extend the lifespan of different model organisms. However, its pharmacological efficiency is controversially discussed. Therefore, the bioactivity of four newly synthesized stilbenes (trans-3,5-dimethoxy-4-fluoro-4'-hydroxystilbene (3), trans-4'-hydroxy-3,4,5-trifluorostilbene (4), trans-2,5-dimethoxy-4'-hydroxystilbene (5), trans-2,4',5-trihydroxystilbene (6)) was compared to (1) and pterostilbene (trans-3,5-dimethoxy-4'-hydroxystilbene (2)) in the established model organism Caenorhabditis elegans. METHODS: Trolox equivalent antioxidant capacity (TEAC), 2',7'-dichlorofluorescein (DCF), thermotolerance assays, C. elegans lifespan analyses. KEY FINDINGS: All compounds exert a strong in-vitro radical scavenging activity (6 > 1 > 5 > 2 = 3 = 4), but in vivo, only (3) and (6) reduce reactive oxygen species (ROS) accumulation. Furthermore, (3) and (6) increased the mobility of aged nematodes and prolonged their mean lifespans, while these compounds decreased the thermal stress resistance. Using daf-16 (FoxO), skn-1 (Nrf2) and sir-2.1 (sirtuin) loss-of-function mutant strains, the in vivo antioxidant effects of compounds (3) and (6) were abolished, showing the necessity of these evolutionary highly conserved factors. However, short-time treatment with stilbenes (3) and (6) did not modulate the cellular localization of the transcription factors DAF-16 and SKN-1. CONCLUSION: In contrast to resveratrol, the synthetic stilbene derivatives (3) and (6) increase the lifespan of C. elegans, rendering them promising candidates for pharmacological anti-ageing purposes.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Longevidad/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Estilbenos/farmacología , Animales , Antioxidantes/farmacología , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/metabolismo , Calor , Mutación , Resveratrol , Estilbenos/síntesis química , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Oxid Med Cell Longev ; 2015: 124357, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26075030

RESUMEN

2,3,5,4'-Tetrahydroxystilbene-2-O-ß-D-glucoside (TSG) was isolated from Polygonum multiflorum, a plant which is traditionally used as an anti-ageing drug. We have analysed ageing-related effects of TSG in the model organism C. elegans in comparison to resveratrol. TSG exerted a high antioxidative capacity both in a cell-free assay and in the nematode. The antioxidative capacity was even higher compared to resveratrol. Presumably due to its antioxidative effects, treatment with TSG decreased the juglone-mediated induction of the antioxidative enzyme SOD-3; the induction of the GST-4 by juglone was diminished slightly. TSG increased the resistance of C. elegans against lethal thermal stress more prominently than resveratrol (50 µM TSG increased mean survival by 22.2%). The level of the ageing pigment lipofuscin was decreased after incubation with the compound. TSG prolongs the mean, median, and maximum adult life span of C. elegans by 23.5%, 29.4%, and 7.2%, respectively, comparable to the effects of resveratrol. TSG-mediated extension of life span was not abolished in a DAF-16 loss-of-function mutant strain showing that this ageing-related transcription factor is not involved in the effects of TSG. Our data show that TSG possesses a potent antioxidative capacity, enhances the stress resistance, and increases the life span of the nematode C. elegans.


Asunto(s)
Caenorhabditis elegans/fisiología , Medicamentos Herbarios Chinos/farmacología , Fallopia multiflora/química , Glucósidos/farmacología , Longevidad/efectos de los fármacos , Estilbenos/farmacología , Estrés Fisiológico/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/enzimología , Proteínas de Caenorhabditis elegans/metabolismo , Medicamentos Herbarios Chinos/química , Depuradores de Radicales Libres/farmacología , Glucósidos/química , Glutatión Transferasa/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Mutación/genética , Especies Reactivas de Oxígeno/metabolismo , Estilbenos/química , Superóxido Dismutasa/metabolismo
11.
PLoS One ; 7(2): e32183, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22359667

RESUMEN

The planar cell polarity (PCP) pathway is highly conserved from Drosophila to humans and a PCP-like pathway has recently been described in the nematode Caenorhabditis elegans. The developmental function of this pathway is to coordinate the orientation of cells or structures within the plane of an epithelium or to organize cell-cell intercalation required for correct morphogenesis. Here, we describe a novel role of VANG-1, the only C. elegans ortholog of the conserved PCP component Strabismus/Van Gogh. We show that two alleles of vang-1 and depletion of the protein by RNAi cause an increase of mean life span up to 40%. Consistent with the longevity phenotype vang-1 animals also show enhanced resistance to thermal- and oxidative stress and decreased lipofuscin accumulation. In addition, vang-1 mutants show defects like reduced brood size, decreased ovulation rate and prolonged reproductive span, which are also related to gerontogenes. The germline, but not the intestine or neurons, seems to be the primary site of vang-1 function. Life span extension in vang-1 mutants depends on the insulin/IGF-1-like receptor DAF-2 and DAF-16/FoxO transcription factor. RNAi against the phase II detoxification transcription factor SKN-1/Nrf2 also reduced vang-1 life span that might be explained by gradual inhibition of insulin/IGF-1-like signaling in vang-1. This is the first time that a key player of the PCP pathway is shown to be involved in the insulin/IGF-1-like signaling dependent modulation of life span in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulina/metabolismo , Longevidad , Fosfoproteínas/fisiología , Transducción de Señal , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Polaridad Celular , Factores de Transcripción Forkhead , Respuesta al Choque Térmico , Estrés Oxidativo , Fosfoproteínas/genética , ARN Interferente Pequeño/farmacología , Receptor de Insulina , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA