Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cell ; 178(6): 1437-1451.e14, 2019 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31491387

RESUMEN

CCCTC-binding factor (CTCF) and cohesin are key players in three-dimensional chromatin organization. The topologically associating domains (TADs) demarcated by CTCF are remarkably well conserved between species, although genome-wide CTCF binding has diverged substantially following transposon-mediated motif expansions. Therefore, the CTCF consensus motif poorly predicts TADs, and additional factors must modulate CTCF binding and subsequent TAD formation. Here, we demonstrate that the ChAHP complex (CHD4, ADNP, HP1) competes with CTCF for a common set of binding motifs. In Adnp knockout cells, novel insulated regions are formed at sites normally bound by ChAHP, whereas proximal canonical boundaries are weakened. These data reveal that CTCF-mediated loop formation is modulated by a distinct zinc-finger protein complex. Strikingly, ChAHP-bound loci are mainly situated within less diverged SINE B2 transposable elements. This implicates ChAHP in maintenance of evolutionarily conserved spatial chromatin organization by buffering novel CTCF binding sites that emerged through SINE expansions.


Asunto(s)
Factor de Unión a CCCTC/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/metabolismo , Células Madre Embrionarias/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Retroelementos , Animales , Sitios de Unión , Línea Celular , Homólogo de la Proteína Chromobox 5 , Células Madre Embrionarias/citología , Ratones , Unión Proteica , Dominios Proteicos
2.
Genes Dev ; 38(11-12): 554-568, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38960717

RESUMEN

Retrotransposon control in mammals is an intricate process that is effectuated by a broad network of chromatin regulatory pathways. We previously discovered ChAHP, a protein complex with repressive activity against short interspersed element (SINE) retrotransposons that is composed of the transcription factor ADNP, chromatin remodeler CHD4, and HP1 proteins. Here we identify ChAHP2, a protein complex homologous to ChAHP, in which ADNP is replaced by ADNP2. ChAHP2 is predominantly targeted to endogenous retroviruses (ERVs) and long interspersed elements (LINEs) via HP1ß-mediated binding of H3K9 trimethylated histones. We further demonstrate that ChAHP also binds these elements in a manner mechanistically equivalent to that of ChAHP2 and distinct from DNA sequence-specific recruitment at SINEs. Genetic ablation of ADNP2 alleviates ERV and LINE1 repression, which is synthetically exacerbated by additional depletion of ADNP. Together, our results reveal that the ChAHP and ChAHP2 complexes function to control both nonautonomous and autonomous retrotransposons by complementary activities, further adding to the complexity of mammalian transposon control.


Asunto(s)
Retroelementos , Animales , Humanos , Ratones , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Retrovirus Endógenos/genética , Regulación de la Expresión Génica/genética , Histonas/metabolismo , Histonas/genética , Elementos de Nucleótido Esparcido Largo/genética , Unión Proteica , Retroelementos/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Complejos Multiproteicos/metabolismo
3.
Cell ; 152(4): 859-72, 2013 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-23415232

RESUMEN

Histone modifications are key regulators of chromatin function. However, little is known to what extent histone modifications can directly impact on chromatin. Here, we address how a modification within the globular domain of histones regulates chromatin function. We demonstrate that H3K122ac can be sufficient to stimulate transcription and that mutation of H3K122 impairs transcriptional activation, which we attribute to a direct effect of H3K122ac on histone-DNA binding. In line with this, we find that H3K122ac defines genome-wide genetic elements and chromatin features associated with active transcription. Furthermore, H3K122ac is catalyzed by the coactivators p300/CBP and can be induced by nuclear hormone receptor signaling. Collectively, this suggests that transcriptional regulators elicit their effects not only via signaling to histone tails but also via direct structural perturbation of nucleosomes by directing acetylation to their lateral surface.


Asunto(s)
Regulación de la Expresión Génica , Código de Histonas , Histonas/metabolismo , Activación Transcripcional , Acetilación , Animales , Línea Celular Tumoral , Eucariontes/metabolismo , Fibroblastos/metabolismo , Humanos , Ratones , Modelos Moleculares , Nucleosomas/metabolismo , Receptores de Estrógenos/metabolismo , Schizosaccharomyces/metabolismo , Sitio de Iniciación de la Transcripción , Factores de Transcripción p300-CBP/metabolismo
4.
Mol Cell ; 77(6): 1222-1236.e13, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32048998

RESUMEN

RNA decay is crucial for mRNA turnover and surveillance and misregulated in many diseases. This complex system is challenging to study, particularly in mammals, where it remains unclear whether decay pathways perform specialized versus redundant roles. Cytoplasmic pathways and links to translation are particularly enigmatic. By directly profiling decay factor targets and normal versus aberrant translation in mouse embryonic stem cells (mESCs), we uncovered extensive decay pathway specialization and crosstalk with translation. XRN1 (5'-3') mediates cytoplasmic bulk mRNA turnover whereas SKIV2L (3'-5') is universally recruited by ribosomes, tackling aberrant translation and sometimes modulating mRNA abundance. Further exploring translation surveillance revealed AVEN and FOCAD as SKIV2L interactors. AVEN prevents ribosome stalls at structured regions, which otherwise require SKIV2L for clearance. This pathway is crucial for histone translation, upstream open reading frame (uORF) regulation, and counteracting ribosome arrest on small ORFs. In summary, we uncovered key targets, components, and functions of mammalian RNA decay pathways and extensive coupling to translation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , Proteínas de Unión al ADN/fisiología , Exorribonucleasas/fisiología , Células Madre Embrionarias de Ratones/metabolismo , Biosíntesis de Proteínas , ARN Helicasas/fisiología , Estabilidad del ARN , ARN Mensajero/metabolismo , Animales , Sistemas CRISPR-Cas , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Embrionarias de Ratones/citología , Sistemas de Lectura Abierta , Proteínas Proto-Oncogénicas/fisiología , ARN Mensajero/química , ARN Mensajero/genética , Ribosomas/genética , Ribosomas/metabolismo
5.
Mol Cell ; 74(3): 534-541.e4, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30898439

RESUMEN

Small RNAs trigger the formation of epialleles that are silenced across generations. Consequently, RNA-directed epimutagenesis is associated with persistent gene repression. Here, we demonstrate that small interfering RNA-induced epimutations in fission yeast are still inherited even when the silenced gene is reactivated, and descendants can reinstate the silencing phenotype that only occurred in their ancestors. This process is mediated by the deposition of a phenotypically neutral molecular mark composed of tri-methylated histone H3 lysine 9 (H3K9me3). Its stable propagation is coupled to RNAi and requires maximal binding affinity of the Clr4/Suvar39 chromodomain to H3K9me3. In wild-type cells, this mark has no visible impact on transcription but causes gene silencing if RNA polymerase-associated factor 1 complex (Paf1C) activity is impaired. In sum, our results reveal a distinct form of epigenetic memory in which cells acquire heritable, transcriptionally active epialleles that confer gene silencing upon modulation of Paf1C.


Asunto(s)
Silenciador del Gen , Heterocromatina/genética , Histonas/genética , Proteínas Nucleares/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ciclo Celular/genética , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina , Metilación , Metiltransferasas/genética , Mutación/genética , Interferencia de ARN , Schizosaccharomyces/genética
6.
Genes Dev ; 33(17-18): 1221-1235, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371437

RESUMEN

TRIM71/LIN-41, a phylogenetically conserved regulator of development, controls stem cell fates. Mammalian TRIM71 exhibits both RNA-binding and protein ubiquitylation activities, but the functional contribution of either activity and relevant primary targets remain poorly understood. Here, we demonstrate that TRIM71 shapes the transcriptome of mouse embryonic stem cells (mESCs) predominantly through its RNA-binding activity. We reveal that TRIM71 binds targets through 3' untranslated region (UTR) hairpin motifs and that it acts predominantly by target degradation. TRIM71 mutations implicated in etiogenesis of human congenital hydrocephalus impair target silencing. We identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1 (Muscleblind-like protein 1). MBNL1 promotes cell differentiation through regulation of alternative splicing, and we demonstrate that TRIM71 promotes embryonic splicing patterns through MBNL1 repression. Hence, repression of MBNL1-dependent alternative splicing may contribute to TRIM71's function in regulating stem cell fates.


Asunto(s)
Empalme Alternativo/genética , Regulación de la Expresión Génica/genética , Proteínas de Unión al ARN/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular Tumoral , Células Madre Embrionarias , Humanos , Ratones , Ratones Noqueados , Mutación , Motivos de Nucleótidos , Unión Proteica , Dominios Proteicos/genética , Interferencia de ARN , Proteínas de Unión al ARN/metabolismo
7.
Genes Dev ; 32(5-6): 415-429, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29535189

RESUMEN

N6-methyladenosine (m6A) is the most abundant mRNA modification in eukaryotes, playing crucial roles in multiple biological processes. m6A is catalyzed by the activity of methyltransferase-like 3 (Mettl3), which depends on additional proteins whose precise functions remain poorly understood. Here we identified Zc3h13 (zinc finger CCCH domain-containing protein 13)/Flacc [Fl(2)d-associated complex component] as a novel interactor of m6A methyltransferase complex components in Drosophila and mice. Like other components of this complex, Flacc controls m6A levels and is involved in sex determination in Drosophila We demonstrate that Flacc promotes m6A deposition by bridging Fl(2)d to the mRNA-binding factor Nito. Altogether, our work advances the molecular understanding of conservation and regulation of the m6A machinery.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Drosophila melanogaster/fisiología , Metiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenosina/metabolismo , Animales , Proteínas de Ciclo Celular , Línea Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Regulación del Desarrollo de la Expresión Génica , Metilación , Ratones , Células Madre Embrionarias de Ratones , Transporte de Proteínas , Precursores del ARN/genética , Empalme del ARN , Factores de Empalme de ARN , Procesos de Determinación del Sexo/genética
8.
RNA ; 29(8): 1140-1165, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37137667

RESUMEN

Removal of introns during pre-mRNA splicing, which is central to gene expression, initiates by base pairing of U1 snRNA with a 5' splice site (5'SS). In mammals, many introns contain weak 5'SSs that are not efficiently recognized by the canonical U1 snRNP, suggesting alternative mechanisms exist. Here, we develop a cross-linking immunoprecipitation coupled to a high-throughput sequencing method, BCLIP-seq, to identify NRDE2 (nuclear RNAi-defective 2), and CCDC174 (coiled-coil domain-containing 174) as novel RNA-binding proteins in mouse ES cells that associate with U1 snRNA and 5'SSs. Both proteins bind directly to U1 snRNA independently of canonical U1 snRNP-specific proteins, and they are required for the selection and effective processing of weak 5'SSs. Our results reveal that mammalian cells use noncanonical splicing factors bound directly to U1 snRNA to effectively select suboptimal 5'SS sequences in hundreds of genes, promoting proper splice site choice, and accurate pre-mRNA splicing.


Asunto(s)
Precursores del ARN , Sitios de Empalme de ARN , Animales , Ratones , Sitios de Empalme de ARN/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/genética , Interferencia de ARN , Empalme del ARN , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/metabolismo , Empalme Alternativo , Mamíferos/genética
9.
EMBO Rep ; 24(1): e55928, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36408846

RESUMEN

Methylation of histone H3 at lysine 9 (H3K9) is a hallmark of heterochromatin that plays crucial roles in gene silencing, genome stability, and chromosome segregation. In Schizosaccharomyces pombe, Clr4 mediates both di- and tri-methylation of H3K9. Although H3K9 methylation has been intensely studied in mitotic cells, its role during sexual differentiation remains unclear. Here, we map H3K9 methylation genome-wide during meiosis and show that constitutive heterochromatin temporarily loses H3K9me2 and becomes H3K9me3 when cells commit to meiosis. Cells lacking the ability to tri-methylate H3K9 exhibit meiotic chromosome segregation defects. Finally, the H3K9 methylation switch is accompanied by differential phosphorylation of Clr4 by the cyclin-dependent kinase Cdk1. Our results suggest that a conserved master regulator of the cell cycle controls the specificity of an H3K9 methyltransferase to prevent ectopic H3K9 methylation and to ensure faithful gametogenesis.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Metilación , Histonas/genética , Histonas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fosforilación , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Gametogénesis/genética
10.
Mol Cell ; 67(2): 294-307.e9, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28648780

RESUMEN

Faithful propagation of functionally distinct chromatin states is crucial for maintaining cellular identity, and its breakdown can lead to diseases such as cancer. Whereas mechanisms that sustain repressed states have been intensely studied, regulatory circuits that protect active chromatin from inactivating signals are not well understood. Here we report a positive feedback loop that preserves the transcription-competent state of RNA polymerase II-transcribed genes. We found that Pdp3 recruits the histone acetyltransferase Mst2 to H3K36me3-marked chromatin. Thereby, Mst2 binds to all transcriptionally active regions genome-wide. Besides acetylating histone H3K14, Mst2 also acetylates Brl1, a component of the histone H2B ubiquitin ligase complex. Brl1 acetylation increases histone H2B ubiquitination, which positively feeds back on transcription and prevents ectopic heterochromatin assembly. Our work uncovers a molecular pathway that secures epigenome integrity and highlights the importance of opposing feedback loops for the partitioning of chromatin into transcriptionally active and inactive states.


Asunto(s)
Ensamble y Desensamble de Cromatina , Eucromatina/enzimología , Silenciador del Gen , Histona Acetiltransferasas/metabolismo , Histonas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimología , Acetilación , Eucromatina/genética , Retroalimentación Fisiológica , Regulación Fúngica de la Expresión Génica , Heterocromatina/enzimología , Heterocromatina/genética , Histona Acetiltransferasas/genética , Proteínas de la Membrana/genética , Mutación , Proteínas Nucleares/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Transcripción Genética , Activación Transcripcional , Ubiquitinación
11.
Genes Dev ; 31(21): 2115-2120, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29212661

RESUMEN

Epigenetic maintenance of gene repression is essential for development. Polycomb complexes are central to this memory, but many aspects of the underlying mechanism remain unclear. LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) binds Polycomb-deposited H3K27me3 and is required for repression of many Polycomb target genes in Arabidopsis Here we show that LHP1 binds RNA in vitro through the intrinsically disordered hinge region. By independently perturbing the RNA-binding hinge region and H3K27me3 (trimethylation of histone H3 at Lys27) recognition, we found that both facilitate LHP1 localization and H3K27me3 maintenance. Disruption of the RNA-binding hinge region also prevented formation of subnuclear foci, structures potentially important for epigenetic repression.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Cromosómicas no Histona/metabolismo , Represión Epigenética/genética , Proteínas Cromosómicas no Histona/genética , Regulación de la Expresión Génica de las Plantas/genética , Histonas/metabolismo , Mutación/genética , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Motivos de Unión al ARN/genética
12.
BMC Genomics ; 25(1): 732, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075377

RESUMEN

Since the introduction of next generation sequencing technologies, the field of epigenomics has evolved rapidly. However, most commonly used assays are enrichment-based methods and thus only semi-quantitative. Nucleosome occupancy and methylome sequencing (NOMe-seq) allows for quantitative inference of chromatin states with single locus resolution, but this requires high sequencing depth and is therefore prohibitively expensive to routinely apply to organisms with large genomes. To overcome this limitation, we introduce guidedNOMe-seq, where we combine NOMe profiling with large scale sgRNA synthesis and Cas9-mediated region-of-interest (ROI) liberation. To facilitate quantitative comparisons between multiple samples, we additionally develop an R package to standardize differential analysis of any type of NOMe-seq data. We extensively benchmark guidedNOMe-seq in a proof-of-concept study, dissecting the interplay of ChAHP and CTCF on chromatin. In summary we present a cost-effective, scalable, and customizable target enrichment extension to the existing NOMe-seq protocol allowing genome-scale quantification of nucleosome occupancy and transcription factor binding at single allele resolution.


Asunto(s)
Alelos , Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Nucleosomas , Cromatina/genética , Cromatina/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Análisis de Secuencia de ADN/métodos
13.
Nature ; 557(7707): 739-743, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29795351

RESUMEN

De novo mutations in ADNP, which encodes activity-dependent neuroprotective protein (ADNP), have recently been found to underlie Helsmoortel-Van der Aa syndrome, a complex neurological developmental disorder that also affects several other organ functions 1 . ADNP is a putative transcription factor that is essential for embryonic development 2 . However, its precise roles in transcriptional regulation and development are not understood. Here we show that ADNP interacts with the chromatin remodeller CHD4 and the chromatin architectural protein HP1 to form a stable complex, which we refer to as ChAHP. Besides mediating complex assembly, ADNP recognizes DNA motifs that specify binding of ChAHP to euchromatin. Genetic ablation of ChAHP components in mouse embryonic stem cells results in spontaneous differentiation concomitant with premature activation of lineage-specific genes and in a failure to differentiate towards the neuronal lineage. Molecularly, ChAHP-mediated repression is fundamentally different from canonical HP1-mediated silencing: HP1 proteins, in conjunction with histone H3 lysine 9 trimethylation (H3K9me3), are thought to assemble broad heterochromatin domains that are refractory to transcription. ChAHP-mediated repression, however, acts in a locally restricted manner by establishing inaccessible chromatin around its DNA-binding sites and does not depend on H3K9me3-modified nucleosomes. Together, our results reveal that ADNP, via the recruitment of HP1 and CHD4, regulates the expression of genes that are crucial for maintaining distinct cellular states and assures accurate cell fate decisions upon external cues. Such a general role of ChAHP in governing cell fate plasticity may explain why ADNP mutations affect several organs and body functions and contribute to cancer progression1,3,4. Notably, we found that the integrity of the ChAHP complex is disrupted by nonsense mutations identified in patients with Helsmoortel-Van der Aa syndrome, and this could be rescued by aminoglycosides that suppress translation termination 5 . Therefore, patients might benefit from therapeutic agents that are being developed to promote ribosomal read-through of premature stop codons6,7.


Asunto(s)
Linaje de la Célula/genética , Proteínas Cromosómicas no Histona/metabolismo , ADN Helicasas/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Homólogo de la Proteína Chromobox 5 , Eucromatina/genética , Eucromatina/metabolismo , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Células Madre Embrionarias de Ratones/citología , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Nucleosomas/metabolismo , Unión Proteica , Proteínas Represoras/metabolismo , Transcripción Genética
14.
PLoS Genet ; 17(6): e1009645, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34157021

RESUMEN

Small non-protein coding RNAs are involved in pathways that control the genome at the level of chromatin. In Schizosaccharomyces pombe, small interfering RNAs (siRNAs) are required for the faithful propagation of heterochromatin that is found at peri-centromeric repeats. In contrast to repetitive DNA, protein-coding genes are refractory to siRNA-mediated heterochromatin formation, unless siRNAs are expressed in mutant cells. Here we report the identification of 20 novel mutant alleles that enable de novo formation of heterochromatin at a euchromatic protein-coding gene by using trans-acting siRNAs as triggers. For example, a single amino acid substitution in the pre-mRNA cleavage factor Yth1 enables siRNAs to trigger silent chromatin formation with unparalleled efficiency. Our results are consistent with a kinetic nascent transcript processing model for the inhibition of small-RNA-directed de novo formation of heterochromatin and lay a foundation for further mechanistic dissection of cellular activities that counteract epigenetic gene silencing.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Silenciador del Gen , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Schizosaccharomyces/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Alelos , Sustitución de Aminoácidos , Centrómero/química , Centrómero/metabolismo , Ensamble y Desensamble de Cromatina , Perfilación de la Expresión Génica , Heterocromatina/química , Heterocromatina/metabolismo , Cinética , Modelos Genéticos , Anotación de Secuencia Molecular , Mutación , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Schizosaccharomyces/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo
15.
Genes Dev ; 30(23): 2571-2580, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27941123

RESUMEN

Small RNAs regulate chromatin modification and transcriptional gene silencing across the eukaryotic kingdom. Although these processes have been well studied, fundamental mechanistic aspects remain obscure. Specifically, it is unclear exactly how small RNA-loaded Argonaute protein complexes target chromatin to mediate silencing. Here, using fission yeast, we demonstrate that transcription of the target locus is essential for RNA-directed formation of heterochromatin. However, high transcriptional activity is inhibitory; thus, a transcriptional window exists that is optimal for silencing. We further found that pre-mRNA splicing is compatible with RNA-directed heterochromatin formation. However, the kinetics of pre-mRNA processing is critical. Introns close to the 5' end of a transcript that are rapidly spliced result in a bistable response whereby the target either remains euchromatic or becomes fully silenced. Together, our results discount siRNA-DNA base pairing in RNA-mediated heterochromatin formation, and the mechanistic insights further reveal guiding paradigms for the design of small RNA-directed chromatin silencing studies in multicellular organisms.


Asunto(s)
Cromatina/metabolismo , Complejo Silenciador Inducido por ARN/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas Argonautas/metabolismo , Regulación Fúngica de la Expresión Génica , Heterocromatina/genética , Histonas/metabolismo , Intrones/genética , Metilación , Precursores del ARN/metabolismo , Empalme del ARN , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
16.
Trends Genet ; 36(3): 203-214, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31952840

RESUMEN

In recent years it has become evident that RNA interference-related mechanisms can mediate the deposition and transgenerational inheritance of specific chromatin modifications in a truly epigenetic fashion. Rapid progress has been made in identifying the RNAi effector proteins and how they work together to confer long-lasting epigenetic responses, and initial studies hint at potential physiological relevance of such regulation. In this review, we highlight mechanistic studies in model organisms that advance our understanding of how small RNAs trigger long-lasting epigenetic changes in gene expression and we discuss observations that lend support for the idea that small RNAs might participate in mechanisms that trigger epigenetic gene expression changes in response to environmental cues and the effects these could have on population adaptation.


Asunto(s)
Epigénesis Genética/genética , Evolución Molecular , Interacción Gen-Ambiente , ARN/genética , Ensamble y Desensamble de Cromatina/genética , Regulación de la Expresión Génica/genética , Silenciador del Gen , Interferencia de ARN , Transducción de Señal/genética
17.
Nucleic Acids Res ; 49(10): 5568-5587, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33999208

RESUMEN

Heterochromatin has essential functions in maintaining chromosome structure, in protecting genome integrity and in stabilizing gene expression programs. Heterochromatin is often nucleated by underlying DNA repeat sequences, such as major satellite repeats (MSR) and long interspersed nuclear elements (LINE). In order to establish heterochromatin, MSR and LINE elements need to be transcriptionally competent and generate non-coding repeat RNA that remain chromatin associated. We explored whether these heterochromatic RNA, similar to DNA and histones, may be methylated, particularly for 5-methylcytosine (5mC) or methyl-6-adenosine (m6A). Our analysis in mouse ES cells identifies only background level of 5mC but significant enrichment for m6A on heterochromatic RNA. Moreover, MSR transcripts are a novel target for m6A RNA modification, and their m6A RNA enrichment is decreased in ES cells that are mutant for Mettl3 or Mettl14, which encode components of a central RNA methyltransferase complex. Importantly, MSR transcripts that are partially deficient in m6A RNA methylation display impaired chromatin association and have a reduced potential to form RNA:DNA hybrids. We propose that m6A modification of MSR RNA will enhance the functions of MSR repeat transcripts to stabilize mouse heterochromatin.


Asunto(s)
ADN/metabolismo , Heterocromatina , ARN/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Metilación , Ratones , Células Madre Embrionarias de Ratones , Secuencias Repetidas en Tándem
18.
Nature ; 520(7546): 248-252, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25807481

RESUMEN

RNA interference (RNAi) refers to the ability of exogenously introduced double-stranded RNA to silence expression of homologous sequences. Silencing is initiated when the enzyme Dicer processes the double-stranded RNA into small interfering RNAs (siRNAs). Small RNA molecules are incorporated into Argonaute-protein-containing effector complexes, which they guide to complementary targets to mediate different types of gene silencing, specifically post-transcriptional gene silencing and chromatin-dependent gene silencing. Although endogenous small RNAs have crucial roles in chromatin-mediated processes across kingdoms, efforts to initiate chromatin modifications in trans by using siRNAs have been inherently difficult to achieve in all eukaryotic cells. Using fission yeast, here we show that RNAi-directed heterochromatin formation is negatively controlled by the highly conserved RNA polymerase-associated factor 1 complex (Paf1C). Temporary expression of a synthetic hairpin RNA in Paf1C mutants triggers stable heterochromatin formation at homologous loci, effectively silencing genes in trans. This repressed state is propagated across generations by the continual production of secondary siRNAs, independently of the synthetic hairpin RNA. Our data support a model in which Paf1C prevents targeting of nascent transcripts by the siRNA-containing RNA-induced transcriptional silencing complex and thereby epigenetic gene silencing, by promoting efficient transcription termination and rapid release of the RNA from the site of transcription. We show that although compromised transcription termination is sufficient to initiate the formation of bi-stable heterochromatin by trans-acting siRNAs, impairment of both transcription termination and nascent transcript release is imperative to confer stability to the repressed state. Our work uncovers a novel mechanism for small-RNA-mediated epigenome regulation and highlights fundamental roles for Paf1C and the RNAi machinery in building epigenetic memory.


Asunto(s)
Complejos Multiproteicos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos/genética , Heterocromatina/genética , Heterocromatina/metabolismo
19.
Mol Cell ; 46(6): 719-21, 2012 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-22749397

RESUMEN

In this issue of Molecular Cell, Ye et al. (2012) show an unexpected cytoplasmic assembly of Arabidopsis ARGONAUTE4/siRNA complexes and that siRNA binding could facilitate the nuclear import of mature AGO4/siRNA complexes, revealing a key regulatory process during RNA-directed DNA methylation (RdDM).

20.
Mol Cell ; 47(2): 215-27, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22683269

RESUMEN

HP1 proteins are major components of heterochromatin, which is generally perceived to be an inert and transcriptionally inactive chromatin structure. Yet, HP1 binding to chromatin is highly dynamic and robust silencing of heterochromatic genes can involve RNA processing. Here, we demonstrate by a combination of in vivo and in vitro experiments that the fission yeast HP1(Swi6) protein guarantees tight repression of heterochromatic genes through RNA sequestration and degradation. Stimulated by positively charged residues in the hinge region, RNA competes with methylated histone H3K9 for binding to the chromodomain of HP1(Swi6). Hence, HP1(Swi6) binding to RNA is incompatible with stable heterochromatin association. We propose a model in which an ensemble of HP1(Swi6) proteins functions as a heterochromatin-specific checkpoint, capturing and priming heterochromatic RNAs for the RNA degradation machinery. Sustaining a functional checkpoint requires continuous exchange of HP1(Swi6) within heterochromatin, which explains the dynamic localization of HP1 proteins on heterochromatin.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Regulación de la Expresión Génica , Heterocromatina/química , ARN/química , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/metabolismo , Secuencia de Aminoácidos , Cromatina/química , Relación Dosis-Respuesta a Droga , Silenciador del Gen , Proteínas Fluorescentes Verdes/metabolismo , Heterocromatina/metabolismo , Histonas/química , Metilación , Modelos Genéticos , Datos de Secuencia Molecular , Polirribosomas/química , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , ARN/metabolismo , ARN Mensajero/metabolismo , Ribonucleoproteínas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA