Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Chem Phys ; 159(19)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37971038

RESUMEN

We report the results of measurements of thermal conductivity coefficient dependence on temperature of single crystals of SrIr4In2Ge4 and EuIr4In2Ge4. The measurements were carried out over the temperature range of ∼5-300 K. The EuIr4In2Ge4 crystal, unlike its strontium analog SrIr4In2Ge4, shows an amazing anisotropy: At low temperatures, it displays significantly smaller thermal conductivity in the ab plane than in the direction of c axis, while at the high ones the thermal conductivity in the direction perpendicular to the c axis increases well above that of in the c axis. The observed phenomena may be a result of the interaction of phonons with 1D chains of short-range ordered magnetic moment of europium atoms and the exchange energy between the chains in the paramagnetic phase of EuIr4In2Ge4.

2.
Sensors (Basel) ; 23(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37836925

RESUMEN

The Gas Electron Multiplier (GEM) was introduced by Fabio Sauli in 1997. This technology is broadly used in current and planned High-Energy Physics (HEP) experiments. One of the key components of these detectors is a readout board, which collects charges amplified by GEM foils and transfers them to readout electronics. The commonly used Cartesian XY readout boards are manufactured from the same type of polyamide film used to produce the GEM foils. The manufacturing process utilizes a deep polyimide etching, similar to the Micro Chemical Vias (MCV) etching process, which is protected by patent. The material prepared in this way is glued onto a rigid substrate and mounted in a detector. The production process was developed at CERN, and the technology has been commercialized to a small extent. Consequently, only a few research centers have the ability to make dedicated readout strips readouts. GEM detectors are characterized by a segmented structure that allows the separation of an electron-multiplying structure from a readout. This feature enables the implementation of a new type of charge reading system without the need to interfere with the GEM foil system. A new approach is proposed to simplify production and reduce the costs of GEM detector readout boards. It is based on the concept of segmental readout structures that are manufactured in standard Printed Circuit Board (PCB) technology. The interconnectors and mountings are located on the back of the bottom, so it is possible to place the readout electronics behind the readout plate. The boards are designed in such a way that they can be panelized into a readout with a more extensive active area. The margin between PCBs is minimalized to approximately 200 µm, which is less than 1% of the 70 × 70 mm2 board area, so the active area is as big as possible. Therefore, this solution gives us the ability to further increase the size of a readout by adding additional segments, which reduces the cost of scaling up the detector size. A few research groups have suggested similar solutions that utilize PCB technology, but currently, only detectors with 1D zigzag readouts have been validated and used. The measurement results of other 2D (XY) redouts using PCB technology have not been presented. The measurements shown and discussed in this paper validated the proposed technology. X-ray radiographs were obtained, validating the ability to use this technology to manufacture readout boards for GEM detectors. In opposition to state-of-the-art readouts, the proposed solution can be manufactured by any PCB manufacturer without using MCV-patented technology. This gives the users flexibility in designing and ordering low-cost custom readouts.

3.
Sensors (Basel) ; 22(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35062586

RESUMEN

The Low Temperature Cofired Ceramic (LTCC) technology has proven to be highly suitable for 3D microstructures manufacturing in electronic devices due to its excellent electrical and mechanical properties. In this paper, a novel idea of implementing the LTCC structures into high-energy particle detectors technology is proposed. It can be applied in High Energy Physics (HEP) laboratories, where such sophisticated sensors are constantly exposed to particles of the TeV energy range for many years. The most advanced applications of the concept are based on dedicated gas amplifier systems coupled with readout microstructures. Typically, the readout microstructures are made in the Printed Circuit Boards (PCB) technology and processed in a sophisticated and patent-protected way. This article presents the manufacturing process and parameters of the novel microstructures made in the LTCC technology. The structures were implemented into the high-energy particle detector, and the first results are presented.

4.
Anal Chem ; 86(22): 11226-9, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25338295

RESUMEN

Storage and preconcentration of various molecules by molecular scavengers for thermal desorption and identification by mass spectrometry is presented. A dielectric barrier discharge ionization source combined with a heating element for the chemical characterization of amines and organic acids, initially trapped by molecular scavengers, is described. The developed technique can be applied for preconcentration of minute amounts of molecules in liquid and gaseous phases, as well as their transportation and thorough analysis. The method, operating at ambient pressure, can also be complementary to electron impact ionization, with no need for sample derivatization.

5.
Materials (Basel) ; 17(6)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38541516

RESUMEN

Currently, MgB2 wires made by the powder-in-tube (PIT) method are most often used in the construction and design of superconducting devices. In this work, we investigated the impact of heat treatment under both low and high isostatic pressures on the formation of a layered structure in PIT MgB2 wires manufactured using the Mg coating method. The microstructure, chemical composition, and density of the obtained superconductive wires were investigated using scanning electron microscopy (SEM) with an energy-dispersive X-ray spectroscopy (EDS) analyzer and optical microscopy with Kameram CMOS software (version 2.11.5.6). Transport measurements of critical parameters were made by using the Physical Property Measurement System (PPMS) for 100 mA and 19 Hz in a perpendicular magnetic field. We observed that the Mg coating method can significantly reduce the reactions of B with the Fe sheath. Moreover, the shape, uniformity, and continuity of the layered structure (cracks, gaps) depend on the homogeneity of the B layer before the synthesis reaction. Additionally, the formation of a layered structure depends on the annealing temperature (for Mg in the liquid or solid-state), isostatic pressure, type of boron, and density of layer B before the synthesis reaction.

6.
Materials (Basel) ; 16(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37763435

RESUMEN

The use of a low annealing temperature during the production of coils made from superconducting materials is very important because it reduces the production costs. In this study, the morphology, transport critical-current density (Jc), irreversible magnetic field (Birr), and critical temperature (Tc) of straight wires and small 2% C-doped MgB2 coils were investigated. The coils were made using the wind-and-react (W&R) method and annealed at various temperatures from 610 °C to 650 °C for 2-12 h. Critical-current measurements were made for both the coils and straight wires at the temperatures of 4.2 K, 20 K, 25 K, and 30 K. During our research study, we determined the process window that provides the best critical parameters of the coils (annealing at a temperature of 650 °C for 6 h). Moreover, we observed that small coils made with unreacted MgB2 wire and then annealed had morphology and critical parameters similar to those of straight 2% C-doped MgB2 wires. Moreover, small-diameter bending of 20 mm and 10 mm did not lead to transverse cracks, which can cause a large reduction in Jc in the coils. This indicates that the processes of optimization of thermal treatment parameters can be carried out on straight MgB2 wires for MgB2 superconducting coils.

7.
Materials (Basel) ; 16(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687508

RESUMEN

The structural and physical properties of the new titanium- and niobium-rich type-A high-entropy alloy (HEA) superconductor Nb0.34Ti0.33Zr0.14Ta0.11Hf0.08 (in at.%) were studied by X-ray powder diffraction, energy dispersive X-ray spectroscopy, magnetization, electrical resistivity, and specific heat measurements. In addition, electronic structure calculations were performed using two complementary methods: the Korringa-Kohn-Rostoker Coherent Potential Approximation (KKR-CPA) and the Projector Augmented Wave (PAW) within Density Functional Theory (DFT). The results obtained indicate that the alloy exhibits type II superconductivity with a critical temperature close to 7.5 K, an intermediate electron-phonon coupling, and an upper critical field of 12.2(1) T. This finding indicates that Nb0.34Ti0.33Zr0.14Ta0.11Hf0.08 has one of the highest upper critical fields among all known HEA superconductors.

8.
Sci Rep ; 13(1): 13123, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573469

RESUMEN

Superconductivity in high-temperature superconductors such as cuprates or iron pnictides is typically achieved by hole or electron doping and it is of great interest to understand how doping affects their properties leading to superconductivity. To study it we conducted Fe and As K edge x-ray absorption spectroscopy measurements on several electron doped compounds from the 112 and 122 family of Eu-based iron pnictides. XANES and EXAFS results confirm that dopants are located at expected sites. For both families we found an electron charge redistribution between As and Fe occurring with doping. The changes it caused are stronger in the 112 family and they are bigger at As sites, which indicates that doped charges are predominantly localized on the dopant site. However, the results obtained do not provide clues why Ni doping in 122 family does not lead to occurrence of superconductivity.

9.
Sci Rep ; 12(1): 14718, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042369

RESUMEN

Compounds containing Eu show a vast range of unique physical properties due to the interplay of electronic and magnetic properties, which can lead to a nontrivial electronic topology combined with magnetic order. We report on the growth of trigonal ([Formula: see text] space group) EuZn2As2 single crystals and on the studies of their structural, electronic and magnetic properties. A range of experimental techniques was applied including X-ray diffraction, electron microscopy, magnetic susceptibility, magnetization, heat capacity and Mössbauer spectroscopy in the study. We found that Eu has solely a 2+ valence state and its magnetic moments below TN = 19.2 K form a canted antiferromagnetic structure, tilted from the basal plane.

10.
Polymers (Basel) ; 14(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36236062

RESUMEN

Here, we report results on the magnetic and microwave properties of polycrystalline Y-type hexaferrite synthesized by sol-gel auto-combustion and acting as a filler in a composite microwave-absorbing material. The reflection losses in the 1-20 GHz range of the Y-type hexaferrite powder dispersed homogeneously in a polymer matrix of silicon rubber were investigated in the absence and in the presence of a magnetic field. A permanent magnet was used with a strength of 1.4 T, with the magnetic force lines oriented perpendicularly to the direction of the electromagnetic wave propagation. In the case of using an external magnetic field, an extraordinary result was observed. The microwave reflection losses reached a maximum value of 35.4 dB at 5.6 GHz in the Ku-band without a magnetic field and a maximum value of 21.4 dB at 8.2 GHz with the external magnetic field applied. The sensitivity of the microwave properties of the composite material to the external magnetic field was manifested by the decrease of the reflected wave attenuation. At a fixed thickness, tm, of the composite, the attenuation peak frequency can be adjusted to a certain value either by changing the filling density or by applying an external magnetic field.

11.
Data Brief ; 31: 105803, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32577449

RESUMEN

The data presented has to do with identifying the various phases arising during the synthesis of the Y-type hexaferrite series Ba0.5Sr1.5Zn2-xNixFe12O22 by auto-combustion that we deem important for their microstructural and magnetic properties. The data and the related analyses support the research paper "Ni-substitution effect on the properties of Ba0.5Sr1.5Zn2-xNixFe12O22 powders" [1]. Thus, the parameters are presented of the phases appearing after auto-combustion and after the initial annealing at 800 °C, namely, crystal cell and crystallite size. Also, additional data are provided obtained by EDS concerning the Ba:Sr:Zn:Ni:Fe ratio in Ba0.5Sr1.5Zn2-xNixFe12O22 (x = 0.8, 1, 1.5) samples synthesized at 1170 °C for 10 h. The data can be used as a reference in establishing how the phases distinguished during the initial process of auto-combustion affect the Ba0.5Sr1.5Zn2-xNixFe12O22 powders, which are candidates for room-temperature multiferroic materials. The data have not been published previously and are made available to permit critical or further analyses.

12.
Talanta ; 146: 29-33, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26695230

RESUMEN

Application of a flowing atmospheric-pressure afterglow ion source for mass spectrometry (FAPA-MS) for the analysis of designer drugs is described. In this paper, we present application of FAPA MS for identification of exemplary psychotropic drugs: JWH-122, 4BMC, Pentedrone, 3,4-DNNC and ETH-CAT. We have utilized two approaches for introducing samples into the plasma stream; first in the form of a methanolic aerosol from the nebulizer, and the second based on a release of vapors from the electrically heated crucible by thermal desorption. The analytes were ionized by FAPA and identified in the mass analyzer. The order of release of the compounds depends on their volatility. These methods offer fast and reliable structural information, without pre-separation, and can be an alternative to the Electron Impact, GC/MS, and ESI for fast analysis of designer-, and other psychoactive drugs.


Asunto(s)
Presión Atmosférica , Drogas de Diseño/análisis , Drogas de Diseño/química , Espectrometría de Masas/métodos , Psicotrópicos/análisis , Psicotrópicos/química , Gases em Plasma/química
13.
J Chromatogr A ; 1389: 96-103, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25746755

RESUMEN

The metabolic pathways of selegiline (a drug used for the treatment of early-stage Parkinson's disease) were analyzed by electrochemical oxidation with application of the flow electrochemical cell consisting of three electrodes (ROXY™, Antec, the Netherlands). Two types of working electrodes were applied: glassy carbon (GC) and boron-doped diamond (BDD). The potential applied at working electrode and composition of the solvent were optimized for the best conditions for oxidation and identification processes. All products were directly analyzed on-line by mass spectrometry. For further characterization of electrochemical oxidation products, the novel approach involving reversed phase chromatography linked to mass spectrometry with dielectric barrier discharge ionization (DBDI-MS) was used. In this manuscript, we report a novel technique for simulation of drug metabolism by electrochemical system (EC) connected to liquid chromatography (LC) and dielectric barrier discharge ionization (DBDI) mass spectrometry (MS) for direct on-line detection of electrochemical oxidation products. Here, we linked LC/DBDI-MS system with an electrochemical flow cell in order to study metabolic pathways via identification of drug metabolites generated electrochemically. The DBDI source has never been used before for identification of psychoactive metabolites generated in an electrochemical flow cell. Our knowledge on the biological background of xenobiotics metabolism and its influence on human body is constantly increasing, but still many mechanisms are not explained. Nowadays, metabolism of pharmaceuticals is mainly studied using liver cells prepared from animals or humans. Cytochrome P450, present in microsomes, is primarily responsible for oxidative metabolism of xenobiotics. It was also shown, that breakdown of popular medicines may be successfully simulated by electrochemistry under appropriate conditions. The presented experiments allow for comparison of these two entirely distinct techniques using selegiline as the model xenobiotic with well-described metabolic pathway in human body. The obtained results for selegiline oxidation show that it is possible to generate the most important selegiline metabolites present in human body - some of them with psychoactive properties, such as methamphetamine and amphetamine. These metabolites, serving as an evidence of the xenobiotic intake, can also be produced, among a larger group of metabolites, by incubation of selegiline with rat and human liver microsomes. The EC/LC/DBDI-MS system provides novel, promising platform for drugs screening of the phase I metabolism. The metabolites can be detected directly by MS or collected and separated by liquid chromatography.


Asunto(s)
Técnicas de Química Analítica/métodos , Electroquímica/métodos , Espectrometría de Masas , Selegilina/química , Selegilina/metabolismo , Anfetaminas/análisis , Animales , Células Cultivadas , Técnicas de Química Analítica/instrumentación , Cromatografía Liquida , Sistema Enzimático del Citocromo P-450/metabolismo , Electroquímica/instrumentación , Electrodos , Humanos , Microsomas Hepáticos/metabolismo , Países Bajos , Oxidación-Reducción , Ratas
14.
Rev Sci Instrum ; 85(5): 054703, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24880391

RESUMEN

The dielectric barrier discharge plasma jet, an example of the nonthermal atmospheric pressure plasma jet (APPJ), generates low-temperature plasmas that are suitable for the atomization of volatile species and can also be served as an ionization source for ambient mass and ion mobility spectrometry. A new design of APPJ for mass spectrometry has been built in our group. In these plasma sources magnetic transformers (MTs) and inductors are typically used in power supplies but they present several drawbacks that are even more evident when dealing with high-voltage normally used in APPJs. To overcome these disadvantages, high frequency generators with the absence of MT are proposed in the literature. However, in the case of miniaturized APPJs these conventional power converters, built of ferromagnetic cores and inductors or by means of LC resonant tank circuits, are not so useful as piezoelectric transformer (PT) based power converters due to bulky components and small efficiency. We made and examined a novel atmospheric pressure plasma jet with PT supplier served as ionization source for ambient mass spectrometry, and especially mobile spectrometry where miniaturization, integration of components, and clean plasma are required. The objective of this paper is to describe the concept, design, and implementation of this miniaturized piezoelectric transformer-based atmospheric pressure plasma jet.

15.
PLoS One ; 9(8): e106088, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25170762

RESUMEN

A new method for on-spot detection and characterization of organic compounds resolved on thin layer chromatography (TLC) plates has been proposed. This method combines TLC with dielectric barrier discharge ionization (DBDI), which produces stable low-temperature plasma. At first, the compounds were separated on TLC plates and then their mass spectra were directly obtained with no additional sample preparation. To obtain good quality spectra the center of a particular TLC spot was heated from the bottom to increase volatility of the compound. MS/MS analyses were also performed to additionally characterize all analytes. The detection limit of proposed method was estimated to be 100 ng/spot of compound.


Asunto(s)
Cromatografía en Capa Delgada/métodos , Compuestos Orgánicos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía en Capa Delgada/instrumentación , Calor , Estructura Molecular , Compuestos Orgánicos/química , Compuestos Orgánicos/aislamiento & purificación , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/instrumentación , Espectrometría de Masas en Tándem/instrumentación
16.
Micron ; 66: 63-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25080278

RESUMEN

Results of quantitative investigations of copper through-silicon vias (TSVs) are presented. The experiments were performed using scanning thermal microscopy (SThM), enabling highly localized imaging of thermal contrast between the copper TSVs and the surrounding material. Both dc and ac active-mode SThM was used and differences between these variants are shown. SThM investigations of TSVs may provide information on copper quality in TSV, as well as may lead to quantitative investigation of thermal boundaries in micro- and nanoelectronic structures. A proposal for heat flow analysis in a TSV, which includes the influence of the boundary region between the TSV and the silicon substrate, is presented; estimation of contact resistance and boundary thermal conductance is also given.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA