Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
PLoS Biol ; 22(6): e3002693, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38905306

RESUMEN

Candida albicans is a commensal of the human microbiota that can form biofilms on implanted medical devices. These biofilms are tolerant to antifungals and to the host immune system. To identify novel genes modulating C. albicans biofilm formation, we performed a large-scale screen with 2,454 C. albicans doxycycline-dependent overexpression strains and identified 16 genes whose overexpression significantly hampered biofilm formation. Among those, overexpression of the ZCF15 and ZCF26 paralogs that encode transcription factors and have orthologs only in biofilm-forming species of the Candida clade, caused impaired biofilm formation both in vitro and in vivo. Interestingly, overexpression of ZCF15 impeded biofilm formation without any defect in hyphal growth. Transcript profiling, transcription factor binding, and phenotypic microarray analyses conducted upon overexpression of ZCF15 and ZCF26 demonstrated their role in reprogramming cellular metabolism by regulating central metabolism including glyoxylate and tricarboxylic acid cycle genes. Taken together, this study has identified a new set of biofilm regulators, including ZCF15 and ZCF26, that appear to control biofilm development through their specific role in metabolic remodeling.


Asunto(s)
Biopelículas , Candida albicans , Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Factores de Transcripción , Biopelículas/crecimiento & desarrollo , Candida albicans/genética , Candida albicans/metabolismo , Candida albicans/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Animales , Plancton/metabolismo , Glioxilatos/metabolismo , Perfilación de la Expresión Génica/métodos , Ratones , Ciclo del Ácido Cítrico , Hifa/metabolismo , Hifa/crecimiento & desarrollo , Hifa/genética , Candidiasis/microbiología , Reprogramación Metabólica
2.
PLoS Pathog ; 20(4): e1012154, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38603707

RESUMEN

Candida albicans chronically colonizes the respiratory tract of patients with Cystic Fibrosis (CF). It competes with CF-associated pathogens (e.g. Pseudomonas aeruginosa) and contributes to disease severity. We hypothesize that C. albicans undergoes specific adaptation mechanisms that explain its persistence in the CF lung environment. To identify the underlying genetic and phenotypic determinants, we serially recovered 146 C. albicans clinical isolates over a period of 30 months from the sputum of 25 antifungal-naive CF patients. Multilocus sequence typing analyses revealed that most patients were individually colonized with genetically close strains, facilitating comparative analyses between serial isolates. We strikingly observed differential ability to filament and form monospecies and dual-species biofilms with P. aeruginosa among 18 serial isolates sharing the same diploid sequence type, recovered within one year from a pediatric patient. Whole genome sequencing revealed that their genomes were highly heterozygous and similar to each other, displaying a highly clonal subpopulation structure. Data mining identified 34 non-synonymous heterozygous SNPs in 19 open reading frames differentiating the hyperfilamentous and strong biofilm-former strains from the remaining isolates. Among these, we detected a glycine-to-glutamate substitution at position 299 (G299E) in the deduced amino acid sequence of the zinc cluster transcription factor ROB1 (ROB1G299E), encoding a major regulator of filamentous growth and biofilm formation. Introduction of the G299E heterozygous mutation in a co-isolated weak biofilm-former CF strain was sufficient to confer hyperfilamentous growth, increased expression of hyphal-specific genes, increased monospecies biofilm formation and increased survival in dual-species biofilms formed with P. aeruginosa, indicating that ROB1G299E is a gain-of-function mutation. Disruption of ROB1 in a hyperfilamentous isolate carrying the ROB1G299E allele abolished hyperfilamentation and biofilm formation. Our study links a single heterozygous mutation to the ability of C. albicans to better survive during the interaction with other CF-associated microbes and illuminates how adaptive traits emerge in microbial pathogens to persistently colonize and/or infect the CF-patient airways.


Asunto(s)
Biopelículas , Candida albicans , Fibrosis Quística , Proteínas Fúngicas , Factores de Transcripción , Fibrosis Quística/microbiología , Candida albicans/genética , Candida albicans/metabolismo , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutación con Ganancia de Función , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pulmón/microbiología , Candidiasis/microbiología , Adaptación Fisiológica
3.
Proc Natl Acad Sci U S A ; 119(29): e2203855119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858359

RESUMEN

Neutrophils form cellular clusters or swarms in response to injury or pathogen intrusion. Yet, intracellular signaling events favoring this coordinated response remain to be fully characterized. Here, we show that calcium signals play a critical role during mouse neutrophil clustering around particles of zymosan, a structural fungal component. Pioneer neutrophils recognizing zymosan or live Candida albicans displayed elevated calcium levels. Subsequently, a transient wave of calcium signals in neighboring cells was observed followed by the attraction of neutrophils that exhibited more persistent calcium signals as they reached zymosan particles. Calcium signals promoted LTB4 production while the blocking of extracellular calcium entry or LTB4 signaling abrogated cluster formation. Finally, using optogenetics to manipulate calcium influx in primary neutrophils, we show that calcium signals could initiate recruitment of neighboring neutrophils in an LTB4-dependent manner. Thus, sustained calcium responses at the center of the cluster are necessary and sufficient for the generation of chemoattractive gradients that attract neutrophils in a self-reinforcing process.


Asunto(s)
Señalización del Calcio , Calcio , Leucotrieno B4 , Neutrófilos , Animales , Calcio/metabolismo , Candida albicans/inmunología , Leucotrieno B4/genética , Leucotrieno B4/fisiología , Ratones , Neutrófilos/inmunología , Zimosan/inmunología
4.
Mol Microbiol ; 117(3): 589-599, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34569668

RESUMEN

Candida albicans is an opportunistic fungal pathogen that is responsible for infections linked to high mortality. Loss-of-function approaches, taking advantage of gene knockouts or inducible down-regulation, have been successfully used in this species in order to understand gene function. However, overexpression of a gene provides an alternative, powerful tool to elucidate gene function and identify novel phenotypes. Notably, overexpression can identify pathway components that might remain undetected using loss-of-function approaches. Several repressible or inducible promoters have been developed which allow to shut off or turn on the expression of a gene in C. albicans upon growth in the presence of a repressor or inducer. In this review, we summarize recent overexpression approaches used to study different aspects of C. albicans biology, including morphogenesis, biofilm formation, drug tolerance, and commensalism.


Asunto(s)
Candida albicans , Proteínas Fúngicas , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Morfogénesis , Fenotipo , Simbiosis
5.
PLoS Biol ; 17(8): e3000422, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398188

RESUMEN

Histone H3 and its variants regulate gene expression but the latter are absent in most ascomycetous fungi. Here, we report the identification of a variant histone H3, which we have designated H3VCTG because of its exclusive presence in the CTG clade of ascomycetes, including Candida albicans, a human pathogen. C. albicans grows both as single yeast cells and hyphal filaments in the planktonic mode of growth. It also forms a three-dimensional biofilm structure in the host as well as on human catheter materials under suitable conditions. H3VCTG null (hht1/hht1) cells of C. albicans are viable but produce more robust biofilms than wild-type cells in both in vitro and in vivo conditions. Indeed, a comparative transcriptome analysis of planktonic and biofilm cells reveals that the biofilm circuitry is significantly altered in H3VCTG null cells. H3VCTG binds more efficiently to the promoters of many biofilm-related genes in the planktonic cells than during biofilm growth, whereas the binding of the core canonical histone H3 on the corresponding promoters largely remains unchanged. Furthermore, biofilm defects associated with master regulators, namely, biofilm and cell wall regulator 1 (Bcr1), transposon enhancement control 1 (Tec1), and non-dityrosine 80 (Ndt80), are significantly rescued in cells lacking H3VCTG. The occupancy of the transcription factor Bcr1 at its cognate promoter binding sites was found to be enhanced in the absence of H3VCTG in the planktonic form of growth resulting in enhanced transcription of biofilm-specific genes. Further, we demonstrate that co-occurrence of valine and serine at the 31st and 32nd positions in H3VCTG, respectively, is essential for its function. Taken together, we show that even in a unicellular organism, differential gene expression patterns are modulated by the relative occupancy of the specific histone H3 type at the chromatin level.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida albicans/genética , Histonas/metabolismo , Candidiasis/microbiología , Cromatina/genética , Cromatina/metabolismo , Proteínas Fúngicas/metabolismo , Expresión Génica/genética , Regulación Fúngica de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Histonas/genética , Humanos , Factores de Transcripción/metabolismo
6.
Yeast ; 38(4): 243-250, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33533498

RESUMEN

The yeast Candida albicans is primarily a commensal of humans that colonizes the mucosal surfaces of the gastrointestinal and genital tracts. Yet, C. albicans can under certain circumstances undergo a shift from commensalism to pathogenicity. This transition is governed by fungal factors such as morphological transitions, environmental cues for instance relationships with gut microbiota and the host immune system. C. albicans utilizes distinct sets of regulatory programs to colonize or infect its host and to evade the host defense systems. Moreover, an orchestrated iron acquisition mechanism operates to adapt to specific niches with variable iron availability. Studies on regulatory networks and morphogenesis of these two distinct modes of C. albicans growth, suggest that both yeast and hyphal forms exist in both growth patterns and the regulatory circuits are inter-connected. Here, we summarize current knowledge about C. albicans commensal-to-pathogen shift, its regulatory elements and their contribution to human disease.


Asunto(s)
Candida albicans/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Hifa/genética , Simbiosis/genética , Candida albicans/crecimiento & desarrollo , Candida albicans/inmunología , Candida albicans/patogenicidad , Candidiasis/microbiología , Tracto Gastrointestinal/microbiología , Humanos , Hifa/crecimiento & desarrollo , Hifa/patogenicidad
7.
Curr Top Microbiol Immunol ; 422: 61-99, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30368597

RESUMEN

Candida albicans is a commensal yeast of most healthy individuals, but also one of the most prevalent human fungal pathogens. During adaptation to the mammalian host, C. albicans encounters different niches where it is exposed to several types of stress, including oxidative, nitrosative (e.g., immune system), osmotic (e.g., kidney and oral cavity) stresses and pH variation (e.g., gastrointestinal (GI) tract and vagina). C. albicans has developed the capacity to respond to the environmental changes by modifying its morphology, which comprises the yeast-to-hypha transition, white-opaque switching, and chlamydospore formation. The yeast-to-hypha transition has been very well characterized and was shown to be modulated by several external stimuli that mimic the host environment. For instance, temperature above 37 â„ƒ, serum, alkaline pH, and CO2 concentration are all reported to enhance filamentation. The transition is characterized by the activation of an intricate regulatory network of signaling pathways, involving many transcription factors. The regulatory pathways that control either the stress response or morphogenesis are required for full virulence and promote survival of C. albicans in the host. Many of these transcriptional circuitries have been characterized, highlighting the complexity and the interconnections between the different pathways. Here, we present the major signaling pathways and the main transcription factors involved in the yeast-to-hypha transition. Furthermore, we describe the role of heat shock transcription factors in the morphogenetic transition, providing an edifying example of the complex cross talk between pathways involved in morphogenesis and stress response.


Asunto(s)
Candida albicans/citología , Candida albicans/genética , Morfogénesis/genética , Animales , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Humanos , Transducción de Señal , Factores de Transcripción/metabolismo , Virulencia
8.
Nucleic Acids Res ; 46(14): 6935-6949, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29982705

RESUMEN

The advent of the genomic era has made elucidating gene function on a large scale a pressing challenge. ORFeome collections, whereby almost all ORFs of a given species are cloned and can be subsequently leveraged in multiple functional genomic approaches, represent valuable resources toward this endeavor. Here we provide novel, genome-scale tools for the study of Candida albicans, a commensal yeast that is also responsible for frequent superficial and disseminated infections in humans. We have generated an ORFeome collection composed of 5099 ORFs cloned in a Gateway™ donor vector, representing 83% of the currently annotated coding sequences of C. albicans. Sequencing data of the cloned ORFs are available in the CandidaOrfDB database at http://candidaorfeome.eu. We also engineered 49 expression vectors with a choice of promoters, tags and selection markers and demonstrated their applicability to the study of target ORFs transferred from the C. albicans ORFeome. In addition, the use of the ORFeome in the detection of protein-protein interaction was demonstrated. Mating-compatible strains as well as Gateway™-compatible two-hybrid vectors were engineered, validated and used in a proof of concept experiment. These unique and valuable resources should greatly facilitate future functional studies in C. albicans and the elucidation of mechanisms that underlie its pathogenicity.


Asunto(s)
Candida albicans/genética , Sistemas de Lectura Abierta , Candida albicans/patogenicidad , Bases de Datos de Ácidos Nucleicos , Vectores Genéticos , Genómica , Mapeo de Interacción de Proteínas
9.
Artículo en Inglés | MEDLINE | ID: mdl-30783002

RESUMEN

Candida albicans is known for its ability to form biofilms, which are communities of microorganisms embedded in an extracellular matrix developing on different surfaces. Biofilms are highly tolerant to antifungal therapy. This phenomenon has been partially explained by the appearance of so-called persister cells, phenotypic variants of wild-type cells, capable of surviving very high concentrations of antimicrobial agents. Persister cells in C. albicans were found exceptionally in biofilms, while none were detected in planktonic cultures of this fungus. Yet, this topic remains controversial, as others could not observe persister cells in biofilms formed by the C. albicans SC5314 laboratory strain. Due to ambiguous data in the literature, this work aimed to reevaluate the presence of persister cells in C. albicans biofilms. We demonstrated that the isolation of C. albicans "persister cells" as described previously was likely to be the result of the survival of biofilm cells that were not reached by the antifungal. We tested biofilms of SC5314 and its derivatives, as well as 95 clinical isolates, using an improved protocol, demonstrating that persister cells are not a characteristic trait of C. albicans biofilms. Although some clinical isolates are able to yield survivors upon the antifungal treatment of biofilms, this phenomenon is rather stochastic and inconsistent.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
10.
Cell Microbiol ; 20(11): e12890, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29998470

RESUMEN

Candida albicans is part of the human gastrointestinal (GI) microbiota. To better understand how C. albicans efficiently establishes GI colonisation, we competitively challenged growth of 572 signature-tagged strains (~10% genome coverage), each conditionally overexpressing a single gene, in the murine gut. We identified CRZ2, a transcription factor whose overexpression and deletion respectively increased and decreased early GI colonisation. Using clues from genome-wide expression and gene-set enrichment analyses, we found that the optimal activity of Crz2p occurs under hypoxia at 37°C, as evidenced by both phenotypic and transcriptomic analyses following CRZ2 genetic perturbation. Consistent with early colonisation of the GI tract, we show that CRZ2 overexpression confers resistance to acidic pH and bile salts, suggesting an adaptation to the upper sections of the gut. Genome-wide location analyses revealed that Crz2p directly modulates the expression of many mannosyltransferase- and cell-wall protein-encoding genes, suggesting a link with cell-wall function. We show that CRZ2 overexpression alters cell-wall phosphomannan abundance and increases sensitivity to tunicamycin, suggesting a role in protein glycosylation. Our study reflects the powerful use of gene overexpression as a complementary approach to gene deletion to identify relevant biological pathways involved in C. albicans interaction with the host environment.


Asunto(s)
Candida albicans/fisiología , Proteínas Fúngicas/genética , Tracto Gastrointestinal/microbiología , Animales , Candida albicans/efectos de los fármacos , Candida albicans/genética , Pared Celular/metabolismo , Femenino , Proteínas Fúngicas/metabolismo , Microbioma Gastrointestinal , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Concentración de Iones de Hidrógeno , Mananos/metabolismo , Manosiltransferasas/genética , Ratones Endogámicos BALB C , Microorganismos Modificados Genéticamente , Regiones Promotoras Genéticas , Tunicamicina/farmacología
11.
Mol Microbiol ; 106(1): 157-182, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28752552

RESUMEN

Skn7 is a conserved fungal heat shock factor-type transcriptional regulator. It participates in maintaining cell wall integrity and regulates the osmotic/oxidative stress response (OSR) in S. cerevisiae, where it is part of a two-component signal transduction system. Here, we comprehensively address the function of Skn7 in the human fungal pathogen Candida albicans. We provide evidence reinforcing functional divergence, with loss of the cell wall/osmotic stress-protective roles and acquisition of the ability to regulate morphogenesis on solid medium. Mapping of the Skn7 transcriptional circuitry, through combination of genome-wide expression and location technologies, pointed to a dual regulatory role encompassing OSR and filamentous growth. Genetic interaction analyses revealed close functional interactions between Skn7 and master regulators of morphogenesis, including Efg1, Cph1 and Ume6. Intracellular biochemical assays revealed that Skn7 is crucial for limiting the accumulation of reactive oxygen species (ROS) in filament-inducing conditions on solid medium. Interestingly, functional domain mapping using site-directed mutagenesis allowed decoupling of Skn7 function in morphogenesis from protection against intracellular ROS. Our work identifies Skn7 as an integral part of the transcriptional circuitry controlling C. albicans filamentous growth and illuminates how C. albicans relies on an evolutionarily-conserved regulator to protect itself from intracellular ROS during morphological development.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Candida albicans/genética , Candida albicans/metabolismo , Pared Celular/metabolismo , Secuencia Conservada/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Genes Fúngicos/genética , Hifa/crecimiento & desarrollo , Morfogénesis , Especies Reactivas de Oxígeno/metabolismo , Elementos de Respuesta/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética
12.
PLoS Pathog ; 10(12): e1004542, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25502890

RESUMEN

Biofilm formation is an important virulence trait of the pathogenic yeast Candida albicans. We have combined gene overexpression, strain barcoding and microarray profiling to screen a library of 531 C. albicans conditional overexpression strains (∼10% of the genome) for genes affecting biofilm development in mixed-population experiments. The overexpression of 16 genes increased strain occupancy within a multi-strain biofilm, whereas overexpression of 4 genes decreased it. The set of 16 genes was significantly enriched for those encoding predicted glycosylphosphatidylinositol (GPI)-modified proteins, namely Ihd1/Pga36, Phr2, Pga15, Pga19, Pga22, Pga32, Pga37, Pga42 and Pga59; eight of which have been classified as pathogen-specific. Validation experiments using either individually- or competitively-grown overexpression strains revealed that the contribution of these genes to biofilm formation was variable and stage-specific. Deeper functional analysis of PGA59 and PGA22 at a single-cell resolution using atomic force microscopy showed that overexpression of either gene increased C. albicans ability to adhere to an abiotic substrate. However, unlike PGA59, PGA22 overexpression led to cell cluster formation that resulted in increased sensitivity to shear forces and decreased ability to form a single-strain biofilm. Within the multi-strain environment provided by the PGA22-non overexpressing cells, PGA22-overexpressing cells were protected from shear forces and fitter for biofilm development. Ultrastructural analysis, genome-wide transcript profiling and phenotypic analyses in a heterologous context suggested that PGA22 affects cell adherence through alteration of cell wall structure and/or function. Taken together, our findings reveal that several novel predicted GPI-modified proteins contribute to the cooperative behaviour between biofilm cells and are important participants during C. albicans biofilm formation. Moreover, they illustrate the power of using signature tagging in conjunction with gene overexpression for the identification of novel genes involved in processes pertaining to C. albicans virulence.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida albicans/fisiología , Pared Celular/fisiología , Proteínas Fúngicas/fisiología , Proteoma/fisiología , Candida albicans/citología , Adhesión Celular/fisiología , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica/fisiología , Fenotipo , Proteoma/genética , Resistencia al Corte/fisiología , Transcriptoma/fisiología
13.
PLoS Pathog ; 10(6): e1004211, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24945925

RESUMEN

The opportunistic fungal pathogen Candida glabrata is a frequent cause of candidiasis, causing infections ranging from superficial to life-threatening disseminated disease. The inherent tolerance of C. glabrata to azole drugs makes this pathogen a serious clinical threat. To identify novel genes implicated in antifungal drug tolerance, we have constructed a large-scale C. glabrata deletion library consisting of 619 unique, individually bar-coded mutant strains, each lacking one specific gene, all together representing almost 12% of the genome. Functional analysis of this library in a series of phenotypic and fitness assays identified numerous genes required for growth of C. glabrata under normal or specific stress conditions, as well as a number of novel genes involved in tolerance to clinically important antifungal drugs such as azoles and echinocandins. We identified 38 deletion strains displaying strongly increased susceptibility to caspofungin, 28 of which encoding proteins that have not previously been linked to echinocandin tolerance. Our results demonstrate the potential of the C. glabrata mutant collection as a valuable resource in functional genomics studies of this important fungal pathogen of humans, and to facilitate the identification of putative novel antifungal drug target and virulence genes.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida glabrata/genética , Farmacorresistencia Fúngica/genética , Equinocandinas/farmacología , Biopelículas/crecimiento & desarrollo , Candida glabrata/crecimiento & desarrollo , Candidiasis/tratamiento farmacológico , Caspofungina , Pared Celular/efectos de los fármacos , Pared Celular/genética , Proteínas Fúngicas/genética , Eliminación de Gen , Técnicas de Inactivación de Genes , Biblioteca de Genes , Lipopéptidos , Pruebas de Sensibilidad Microbiana , Presión Osmótica , Fenotipo
15.
J Biol Chem ; 288(19): 13387-96, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23508952

RESUMEN

BACKGROUND: SUN proteins are involved in yeast morphogenesis, but their function is unknown. RESULTS: SUN protein plays a role in the Aspergillus fumigatus morphogenesis. Biochemical properties of recombinant SUN proteins were elucidated. CONCLUSION: Both Candida albicans and Aspergillus fumigatus sun proteins show a ß-(1,3)-glucanase activity. SIGNIFICANCE: The mode of action of SUN proteins on ß-(1,3)-glucan is unique, new, and original. In yeasts, the family of SUN proteins has been involved in cell wall biogenesis. Here, we report the characterization of SUN proteins in a filamentous fungus, Aspergillus fumigatus. The function of the two A. fumigatus SUN genes was investigated by combining reverse genetics and biochemistry. During conidial swelling and mycelial growth, the expression of AfSUN1 was strongly induced, whereas the expression of AfSUN2 was not detectable. Deletion of AfSUN1 negatively affected hyphal growth and conidiation. A closer examination of the morphological defects revealed swollen hyphae, leaky tips, intrahyphal growth, and double cell wall, suggesting that, like in yeast, AfSun1p is associated with cell wall biogenesis. In contrast to AfSUN1, deletion of AfSUN2 either in the parental strain or in the AfSUN1 single mutant strain did not affect colony and hyphal morphology. Biochemical characterization of the recombinant AfSun1p and Candida albicans Sun41p showed that both proteins had a unique hydrolysis pattern: acting on ß-(1,3)-oligomers from dimer up to insoluble ß-(1,3)-glucan. Referring to the CAZy database, it is clear that fungal SUN proteins represent a new family of glucan hydrolases (GH132) and play an important morphogenetic role in fungal cell wall biogenesis and septation.


Asunto(s)
Aspergillus fumigatus/enzimología , Proteínas Fúngicas/metabolismo , Glicósido Hidrolasas/metabolismo , Hifa/enzimología , Morfogénesis , Esporas Fúngicas/enzimología , Secuencia de Aminoácidos , Aspergillus fumigatus/genética , Aspergillus fumigatus/crecimiento & desarrollo , Candida albicans/enzimología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Expresión Génica , Regulación Fúngica de la Expresión Génica , Glicoproteínas/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicosilación , Hidrólisis , Hifa/genética , Hifa/crecimiento & desarrollo , Datos de Secuencia Molecular , Oligosacáridos/química , Unión Proteica , Procesamiento Proteico-Postraduccional , Homología de Secuencia de Aminoácido , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo
16.
PLoS Pathog ; 8(5): e1002683, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22589718

RESUMEN

In nature, many microorganisms form specialized complex, multicellular, surface-attached communities called biofilms. These communities play critical roles in microbial pathogenesis. The fungal pathogen Candida albicans is associated with catheter-based infections due to its ability to establish biofilms. The transcription factor Bcr1 is a master regulator of C. albicans biofilm development, although the full extent of its regulation remains unknown. Here, we report that Bcr1 is a phosphoprotein that physically interacts with the NDR kinase Cbk1 and undergoes Cbk1-dependent phosphorylation. Mutating the two putative Cbk1 phosphoacceptor residues in Bcr1 to alanine markedly impaired Bcr1 function during biofilm formation and virulence in a mouse model of disseminated candidiasis. Cells lacking Cbk1, or any of its upstream activators, also had reduced biofilm development. Notably, mutating the two putative Cbk1 phosphoacceptor residues in Bcr1 to glutamate in cbk1Δ cells upregulated the transcription of Bcr1-dependent genes and partially rescued the biofilm defects of a cbk1Δ strain. Therefore, our data uncovered a novel role of the NDR/LATS kinase Cbk1 in the regulation of biofilm development through the control of Bcr1.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Candida albicans/patogenicidad , Proteínas Fúngicas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Candida albicans/genética , Candida albicans/metabolismo , Candidiasis , Adhesión Celular/genética , Femenino , Proteínas Fúngicas/genética , Regulación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteínas Serina-Treonina Quinasas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
17.
Bio Protoc ; 14(3): e4932, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38379825

RESUMEN

The human pathogenic yeast Candida albicans can attach to epithelial cells or indwelling medical devices to form biofilms. These microbial communities are highly problematic in the clinic as they reduce both sensitivity to antifungal drugs and detection of fungi by the immune system. Amyloid structures are highly organized quaternary structures that play a critical role in biofilm establishment by allowing fungal cells to adhere to each other. Thus, fungal amyloids are exciting targets to develop new antifungal strategies. Thioflavin T is a specific fluorescent dye widely used to study amyloid properties of target proteins in vitro (spectrophotometry) and in vivo (epifluorescence/confocal microscopy). Notably, thioflavin T has been used to demonstrate the ability of Als5, a C. albicans adhesin, to form an amyloid fiber upon adhesion. We have developed a pipeline that allows us to study amyloid properties of target proteins using thioflavin T staining in vitro and in vivo, as well as in intact fungal biofilms. In brief, we used thioflavin T to sequentially stain (i) amyloid peptides, (ii) recombinant proteins, (iii) fungal cells treated or not with amyloid peptides, (iv) fungal amyloids enriched by cell fractionation, and (v) intact biofilms of C. albicans. Contrary to other methods, our pipeline gives a complete picture of the amyloid behavior of target proteins, from in vitro analysis to intact fungal biofilms. Using this pipeline will allow an assessment of the relevance of the in vitro results in cells and the impact of amyloids on the development and/or maintenance of fungal biofilm. Key features • Study of amyloid properties of fungal proteins. • Visualization of the subcellular localization of fungal amyloid material using epifluorescence or confocal microscopy. • Unraveling of the amyloid properties of target proteins and their physiological meaning for biofilm formation. • Observation of the presence of amyloid structures with live-cell imaging on intact fungal biofilm using confocal microscopy.

18.
Res Microbiol ; 174(3): 104014, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36535619

RESUMEN

Candida albicans, the most prevalent fungal pathogen in the human microbiota can form biofilms on implanted medical devices. These biofilms are tolerant to conventional antifungal drugs and the host immune system as compared to the free-floating planktonic cells. Several in vitro models of biofilm formation have been used to determine the C. albicans biofilm-forming process, regulatory networks, and their properties. Here, we performed a genome-wide transcript profiling with C. albicans cells grown in YPD medium both in planktonic and biofilm condition. Transcript profiling of YPD-grown biofilms was further compared with published Spider medium-grown biofilm transcriptome data. This comparative analysis highlighted the differentially expressed genes and the pathways altered during biofilm formation. In addition, we demonstrated that overexpression of the PDB1 gene encoding a subunit of the pyruvate dehydrogenase resulted in defective biofilm formation. Altogether, this comparative analysis of transcript profiles from two different studies provides a robust reading on biofilm-altered genes and pathways during C. albicans biofilm development.


Asunto(s)
Candida albicans , Complejo Piruvato Deshidrogenasa , Humanos , Candida albicans/metabolismo , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Antifúngicos/metabolismo , Transcriptoma , Biopelículas
19.
NPJ Biofilms Microbiomes ; 9(1): 6, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36697414

RESUMEN

The human commensal fungus Candida albicans can attach to epithelia or indwelling medical devices and form biofilms, that are highly tolerant to antifungal drugs and can evade the immune response. The cell surface protein Pga59 has been shown to influence adhesion and biofilm formation. Here, we present evidence that Pga59 displays amyloid properties. Using electron microscopy, staining with an amyloid fibre-specific dye and X-ray diffraction experiments, we showed that the predicted amyloid-forming region of Pga59 is sufficient to build up an amyloid fibre in vitro and that recombinant Pga59 can also adopt a cross-ß amyloid fibre architecture. Further, mutations impairing Pga59 amyloid assembly led to diminished adhesion to substrates and reduced biofilm production. Immunogold labelling on amyloid structures extracted from C. albicans revealed that Pga59 is used by the fungal cell to assemble amyloids within the cell wall in response to adhesion. Altogether, our results suggest that Pga59 amyloid properties are used by the fungal cell to mediate cell-substrate interactions and biofilm formation.


Asunto(s)
Proteínas Amiloidogénicas , Biopelículas , Candida albicans , Pared Celular , Proteínas Fúngicas , Humanos , Amiloide/metabolismo , Proteínas Amiloidogénicas/genética , Proteínas Amiloidogénicas/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
20.
Res Microbiol ; 174(3): 104025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587858

RESUMEN

Candida albicans is a major fungal pathogen of humans. Although its genome has been sequenced more than two decades ago, there are still over 4300 uncharacterized C. albicans genes. We previously generated an ORFeome as well as a collection of destination vectors to facilitate overexpression of C. albicans ORFs. Here, we report the construction of ∼2500 overexpression mutants and their evaluation by in vitro spotting on rich medium and in a liquid pool experiment in rich medium, allowing the identification of genes whose overexpression has a fitness cost. The candidates were further validated at the individual strain level. This new resource allows large-scale screens in different growth conditions to be performed routinely. Altogether, based on the concept of identifying functionally related genes by cluster analysis, the availability of this overexpression mutant collection will facilitate the characterization of gene functions in C. albicans.


Asunto(s)
Candida albicans , Genoma Fúngico , Candida albicans/genética , Proteínas Fúngicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA