Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 20(8): e3001729, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35972940

RESUMEN

Species introduced through human-related activities beyond their native range, termed alien species, have various impacts worldwide. The IUCN Environmental Impact Classification for Alien Taxa (EICAT) is a global standard to assess negative impacts of alien species on native biodiversity. Alien species can also positively affect biodiversity (for instance, through food and habitat provisioning or dispersal facilitation) but there is currently no standardized and evidence-based system to classify positive impacts. We fill this gap by proposing EICAT+, which uses 5 semiquantitative scenarios to categorize the magnitude of positive impacts, and describes underlying mechanisms. EICAT+ can be applied to all alien taxa at different spatial and organizational scales. The application of EICAT+ expands our understanding of the consequences of biological invasions and can inform conservation decisions.


Asunto(s)
Biodiversidad , Especies Introducidas , Ecosistema , Actividades Humanas , Humanos
2.
Conserv Biol ; 38(2): e14214, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38051018

RESUMEN

The Environmental Impact Classification for Alien Taxa (EICAT) is an important tool for biological invasion policy and management and has been adopted as an International Union for Conservation of Nature (IUCN) standard to measure the severity of environmental impacts caused by organisms living outside their native ranges. EICAT has already been incorporated into some national and local decision-making procedures, making it a particularly relevant resource for addressing the impact of non-native species. Recently, some of the underlying conceptual principles of EICAT, particularly those related to the use of the precautionary approach, have been challenged. Although still relatively new, guidelines for the application and interpretation of EICAT will be periodically revisited by the IUCN community, based on scientific evidence, to improve the process. Some of the criticisms recently raised are based on subjectively selected assumptions that cannot be generalized and may harm global efforts to manage biological invasions. EICAT adopts a precautionary principle by considering a species' impact history elsewhere because some taxa have traits that can make them inherently more harmful. Furthermore, non-native species are often important drivers of biodiversity loss even in the presence of other pressures. Ignoring the precautionary principle when tackling the impacts of non-native species has led to devastating consequences for human well-being, biodiversity, and ecosystems, as well as poor management outcomes, and thus to significant economic costs. EICAT is a relevant tool because it supports prioritization and management of non-native species and meeting and monitoring progress toward the Kunming-Montreal Global Biodiversity Framework (GBF) Target 6.


Uso de la Clasificación de Impacto Ambiental de los Taxones Exóticos de la UICN para la toma de decisiones Resumen La Clasificación de Impacto Ambiental de los Taxones Exóticos (EICAT, en inglés) es una herramienta importante para las políticas y manejo de las invasiones biológicas y ha sido adoptada como un estándar de la Unión Internacional para la Conservación de la Naturaleza (UICN) para medir la seriedad del impacto ambiental causado por los organismos que viven fuera de su extensión nativa. La EICAT ya ha sido incorporada a algunos procedimientos locales y nacionales de toma de decisiones, lo que la vuelve un recurso particularmente relevante para abordar el impacto de las especies no nativas. Algunos principios conceptuales subyacentes de la EICAT han sido cuestionados recientemente, en particular aquellos relacionados con el uso del principio de precaución. Aunque todavía son relativamente nuevas, las directrices para la aplicación e interpretación de la EICAT tendrán una revisión periódica, basada en evidencia científica, por parte de la comunidad de la UICN para mejorar el proceso. Algunas de las críticas recientes están basadas en suposiciones seleccionadas subjetivamente que no pueden generalizarse y podrían perjudicar los esfuerzos globales para manejar las invasiones biológicas. La EICAT adopta un principio de precaución cuando considera el historial de impacto de una especie en cualquier otro lugar ya que algunos taxones tienen características que podrían volverlos más dañinos. Además, las especies no nativas suelen ser factores de pérdida de bidiversidad, incluso bajo otras presiones. Cuando ignoramos el principio de precaución al abordar el impacto de las especies no nativas, hay consecuencias devastadoras para el bienestar humano, la biodiversidad y los ecosistemas, así como resultados pobres de conservación, y por lo tanto con costos económicos importantes. La EICAT es una herramienta relevante porque respalda la priorización y el manejo de las especies no nativas y ayuda con el cumplimiento y monitoreo del progreso para llegar al objetivo 6 del Marco Mundial de Biodiversidad Kunming­Montreal.


Asunto(s)
Ecosistema , Especies Introducidas , Humanos , Conservación de los Recursos Naturales , Biodiversidad
3.
Ecol Lett ; 26(10): 1726-1739, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37515418

RESUMEN

Biodiversity is diminishing at alarming rates due to multiple anthropogenic drivers. To mitigate these drivers, their impacts must be quantified accurately and comparably across drivers. To enable that, we present a generally applicable framework introducing fundamental principles of ecological impact quantification, including the quantification of interactions between multiple drivers. The framework contrasts biodiversity variables in impacted against those in unimpacted or other reference situations while accounting for their temporal dynamics through modelling. Properly accounting for temporal dynamics reduces biases in impact quantification and comparison. The framework addresses key questions around ecological impacts in global change science, namely, how to compare impacts under temporal dynamics across stressors, how to account for stressor interactions in such comparisons, and how to compare the success of management actions over time.


Asunto(s)
Biodiversidad , Ecosistema
4.
Conserv Biol ; 36(5): e13931, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35561048

RESUMEN

Approaches, values, and perceptions in invasion science are highly dynamic, and like in other disciplines, views among different people can diverge. This has led to debate in the field specifically surrounding the core themes of values, management, impacts, and terminology. Considering these debates, we surveyed 698 scientists and practitioners globally to assess levels of polarization (opposing views) on core and contentious topics. The survey was distributed online (via Google Forms) and promoted through listservs and social media. Although there were generally high levels of consensus among respondents, there was some polarization (scores of ≥0.39 [top quartile]). Relating to values, there was high polarization regarding claims of invasive species denialism, whether invasive species contribute to biodiversity, and how biodiversity reporting should be conducted. With regard to management, there were polarized views on banning the commercial use of beneficial invasive species, the extent to which stakeholders' perceptions should influence management, whether invasive species use alone is an appropriate control strategy, and whether eradication of invasive plants is possible. For impacts, there was high polarization concerning whether invasive species drive or are a side effect of degradation and whether invasive species benefits are understated. For terminology, polarized views related to defining invasive species based only on spread, whether species can be labeled as invasive in their native ranges, and whether language used is too xenophobic. Factor and regression analysis revealed that views were particularly divergent between people working on different invasive taxa (plants and mammals) and in different disciplines (between biologists and social scientists), between academics and practitioners, and between world regions (between Africa and the Global North). Unlike in other studies, age and gender had a limited influence on response patterns. Better integration globally and between disciplines, taxa, and sectors (e.g., academic vs. practitioners) could help build broader understanding and consensus.


Los enfoques, valores y percepciones en el campo de las invasiones biológicas son muy dinámicos, y como en otras disciplinas científicas, los expertos pueden tener distintas opiniones. Esto ha creado debates, especialmente sobre temas relacionados con valores, gestión, impactos y terminología. Considerando estos debates, encuestamos a 698 científicos y gestores de todo el mundo para evaluar sus niveles de polarización (opiniones opuestas) sobre una serie de temas fundamentales y polémicos. La encuesta fue distribuida a través de internet (a través de Google Forms) y promovida por medio de listas de correo electrónico y redes sociales. Aunque, en general, hubo consenso entre los encuestados, hubo cierta polarización (puntuaciones de ≥ 0.39 [cuartil más alto]). En relación con valores, hubo una gran polarización sobre aquellas declaraciones relacionadas con el negacionismo de especies invasoras, si las especies invasoras contribuyen a aumentar la biodiversidad y cómo se deberían llevar a cabo los informes sobre biodiversidad. En relación con la gestión, hubo opiniones polarizadas sobre la prohibición del uso comercial de especies invasoras beneficiosas, si la opinión de las partes interesadas debería influir en la gestión, si el uso de especies invasoras por sí solo es una estrategia de control adecuada y si la erradicación de plantas invasoras es factible. En cuanto a impactos, hubo gran polarización en cuanto a sí las especies invasoras conducen a o son un efecto lateral de la degradación de ecosistemas y ssi los beneficios de las especies invasoras están subestimados. En cuanto a terminología, encontramos opiniones polarizadas relacionadas con definir especies invasoras exclusivamente en base a su expansión, si las especies se pueden considerar invasoras en sus rangos de distribución nativos y si el lenguaje utilizado en el campo de las invasiones biológicas es xenofóbico. Los análisis factoriales y de regresión revelaron que las opiniones de los expertos encuestados fueron particularmente divergentes entre personas que trabajan con diferentes taxones (plantas y mamíferos) en diferentes disciplinas (entre biólogos y sociólogos), entre científicos y gestores y entre regiones del mundo (entre países de África y del hemisferio Norte). A diferencia de otros estudios, la edad y el género tuvieron una influencia limitada sobre lass respuestas obtenidas. Una mejor integración global y entre disciplinas, taxones y sectores (o. e., investigadores vs. gestores) podría contribuir a alcanzar un mayor entendimiento y consenso.


Asunto(s)
Conservación de los Recursos Naturales , Especies Introducidas , Animales , Biodiversidad , Consenso , Humanos , Mamíferos , Plantas
5.
Proc Natl Acad Sci U S A ; 115(10): E2264-E2273, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29432147

RESUMEN

Our ability to predict the identity of future invasive alien species is largely based upon knowledge of prior invasion history. Emerging alien species-those never encountered as aliens before-therefore pose a significant challenge to biosecurity interventions worldwide. Understanding their temporal trends, origins, and the drivers of their spread is pivotal to improving prevention and risk assessment tools. Here, we use a database of 45,984 first records of 16,019 established alien species to investigate the temporal dynamics of occurrences of emerging alien species worldwide. Even after many centuries of invasions the rate of emergence of new alien species is still high: One-quarter of first records during 2000-2005 were of species that had not been previously recorded anywhere as alien, though with large variation across taxa. Model results show that the high proportion of emerging alien species cannot be solely explained by increases in well-known drivers such as the amount of imported commodities from historically important source regions. Instead, these dynamics reflect the incorporation of new regions into the pool of potential alien species, likely as a consequence of expanding trade networks and environmental change. This process compensates for the depletion of the historically important source species pool through successive invasions. We estimate that 1-16% of all species on Earth, depending on the taxonomic group, qualify as potential alien species. These results suggest that there remains a high proportion of emerging alien species we have yet to encounter, with future impacts that are difficult to predict.


Asunto(s)
Especies Introducidas/estadística & datos numéricos , Animales , Biodiversidad , Ecosistema , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Especies Introducidas/historia , Modelos Biológicos , Dinámica Poblacional/historia
6.
Glob Chang Biol ; 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33289257

RESUMEN

For an efficient allocation of the limited resources to alien species management, the most damaging species should be prioritized. Comparing alien species based on their impacts is not straightforward, as the same species can cause different types and magnitudes of impacts when introduced to different contexts, making it difficult to summarize its overall impact. The Environmental Impact Classification of Alien Taxa (EICAT) systematically summarizes and compares detrimental impacts caused by alien populations to native biota and has been adopted by the International Union for Conservation of Nature (IUCN). For each alien species, all reported impacts to native populations within the introduced range are classified into five levels of severity, from negligible impact to irreversible local extinction. Currently, EICAT only compares alien species based on their highest impact, thereby ignoring variation in impact magnitudes. Here, we used information on the variation in impact magnitudes of alien species to estimate their risks to cause high impacts if introduced to a novel environment. We demonstrate the usefulness of this approach by classifying the global impacts of alien ungulates. We found impact reports for 27 of the 66 alien ungulate species established worldwide, highlighting substantial knowledge gaps in invasion science. We classified a total of 441 impacts to native fauna and flora caused by these 27 species. Twenty-six of the species were found to cause harmful impacts (native population declines or local extinctions). Mouflon (Ovis orientalis, Gmelin, 1774) and dromedary (Camelus dromedarius, Linnaeus, 1758) had a higher risk of causing local extinctions if introduced to a novel environment than sika deer (Cervus nippon, Temminck, 1838) and goats (Capra hircus, Linnaeus, 1758). Including risk of high impacts allows to discriminate among species with the same EICAT classification and improves alien species prioritization for management.

7.
Glob Chang Biol ; 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33000893

RESUMEN

Biological invasions have steadily increased over recent centuries. However, we still lack a clear expectation about future trends in alien species numbers. In particular, we do not know whether alien species will continue to accumulate in regional floras and faunas, or whether the pace of accumulation will decrease due to the depletion of native source pools. Here, we apply a new model to simulate future numbers of alien species based on estimated sizes of source pools and dynamics of historical invasions, assuming a continuation of processes in the future as observed in the past (a business-as-usual scenario). We first validated performance of different model versions by conducting a back-casting approach, therefore fitting the model to alien species numbers until 1950 and validating predictions on trends from 1950 to 2005. In a second step, we selected the best performing model that provided the most robust predictions to project trajectories of alien species numbers until 2050. Altogether, this resulted in 3,790 stochastic simulation runs for 38 taxon-continent combinations. We provide the first quantitative projections of future trajectories of alien species numbers for seven major taxonomic groups in eight continents, accounting for variation in sampling intensity and uncertainty in projections. Overall, established alien species numbers per continent were predicted to increase from 2005 to 2050 by 36%. Particularly, strong increases were projected for Europe in absolute (+2,543 ± 237 alien species) and relative terms, followed by Temperate Asia (+1,597 ± 197), Northern America (1,484 ± 74) and Southern America (1,391 ± 258). Among individual taxonomic groups, especially strong increases were projected for invertebrates globally. Declining (but still positive) rates were projected only for Australasia. Our projections provide a first baseline for the assessment of future developments of biological invasions, which will help to inform policies to contain the spread of alien species.

8.
Glob Chang Biol ; 26(9): 4880-4893, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32663906

RESUMEN

Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio-economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid-21st century. Based on responses from 36 experts in biological invasions, moderate (20%-30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions-transport, climate change and socio-economic change-were predicted to significantly affect future impacts of alien species on biodiversity even under a best-case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best-case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post-2020 Framework of the Convention on Biological Diversity.


Asunto(s)
Biodiversidad , Especies Introducidas , Cambio Climático , Ecosistema , Predicción , Humanos
10.
Glob Chang Biol ; 25(3): 1032-1048, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30548757

RESUMEN

The European Union (EU) has recently published its first list of invasive alien species (IAS) of EU concern to which current legislation must apply. The list comprises species known to pose great threats to biodiversity and needs to be maintained and updated. Horizon scanning is seen as critical to identify the most threatening potential IAS that do not yet occur in Europe to be subsequently risk assessed for future listing. Accordingly, we present a systematic consensus horizon scanning procedure to derive a ranked list of potential IAS likely to arrive, establish, spread and have an impact on biodiversity in the region over the next decade. The approach is unique in the continental scale examined, the breadth of taxonomic groups and environments considered, and the methods and data sources used. International experts were brought together to address five broad thematic groups of potential IAS. For each thematic group the experts first independently assembled lists of potential IAS not yet established in the EU but potentially threatening biodiversity if introduced. Experts were asked to score the species within their thematic group for their separate likelihoods of i) arrival, ii) establishment, iii) spread, and iv) magnitude of the potential negative impact on biodiversity within the EU. Experts then convened for a 2-day workshop applying consensus methods to compile a ranked list of potential IAS. From an initial working list of 329 species, a list of 66 species not yet established in the EU that were considered to be very high (8 species), high (40 species) or medium (18 species) risk species was derived. Here, we present these species highlighting the potential negative impacts and the most likely biogeographic regions to be affected by these potential IAS.


Asunto(s)
Biodiversidad , Ecosistema , Especies Introducidas/tendencias , Animales , Conferencias de Consenso como Asunto , Política Ambiental , Unión Europea , Especies Introducidas/estadística & datos numéricos , Medición de Riesgo
11.
J Environ Manage ; 250: 109479, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31499467

RESUMEN

Distributed environmental research infrastructures are important to support assessments of the effects of global change on landscapes, ecosystems and society. These infrastructures need to provide continuity to address long-term change, yet be flexible enough to respond to rapid societal and technological developments that modify research priorities. We used a horizon scanning exercise to identify and prioritize emerging research questions for the future development of ecosystem and socio-ecological research infrastructures in Europe. Twenty research questions covered topics related to (i) ecosystem structures and processes, (ii) the impacts of anthropogenic drivers on ecosystems, (iii) ecosystem services and socio-ecological systems and (iv), methods and research infrastructures. Several key priorities for the development of research infrastructures emerged. Addressing complex environmental issues requires the adoption of a whole-system approach, achieved through integration of biotic, abiotic and socio-economic measurements. Interoperability among different research infrastructures needs to be improved by developing standard measurements, harmonizing methods, and establishing capacities and tools for data integration, processing, storage and analysis. Future research infrastructures should support a range of methodological approaches including observation, experiments and modelling. They should also have flexibility to respond to new requirements, for example by adjusting the spatio-temporal design of measurements. When new methods are introduced, compatibility with important long-term data series must be ensured. Finally, indicators, tools, and transdisciplinary approaches to identify, quantify and value ecosystem services across spatial scales and domains need to be advanced.


Asunto(s)
Ecología , Ecosistema , Europa (Continente)
12.
PLoS Biol ; 12(5): e1001850, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24802715

RESUMEN

Species moved by human activities beyond the limits of their native geographic ranges into areas in which they do not naturally occur (termed aliens) can cause a broad range of significant changes to recipient ecosystems; however, their impacts vary greatly across species and the ecosystems into which they are introduced. There is therefore a critical need for a standardised method to evaluate, compare, and eventually predict the magnitudes of these different impacts. Here, we propose a straightforward system for classifying alien species according to the magnitude of their environmental impacts, based on the mechanisms of impact used to code species in the International Union for Conservation of Nature (IUCN) Global Invasive Species Database, which are presented here for the first time. The classification system uses five semi-quantitative scenarios describing impacts under each mechanism to assign species to different levels of impact-ranging from Minimal to Massive-with assignment corresponding to the highest level of deleterious impact associated with any of the mechanisms. The scheme also includes categories for species that are Not Evaluated, have No Alien Population, or are Data Deficient, and a method for assigning uncertainty to all the classifications. We show how this classification system is applicable at different levels of ecological complexity and different spatial and temporal scales, and embraces existing impact metrics. In fact, the scheme is analogous to the already widely adopted and accepted Red List approach to categorising extinction risk, and so could conceivably be readily integrated with existing practices and policies in many regions.


Asunto(s)
Distribución Animal/fisiología , Ambiente , Especies Introducidas/estadística & datos numéricos , Dispersión de las Plantas/fisiología , Animales , Biodiversidad , Extinción Biológica , Cadena Alimentaria , Herbivoria/fisiología , Actividades Humanas/tendencias , Humanos , Plantas/microbiología , Plantas/parasitología , Plantas/virología , Dinámica Poblacional/tendencias , Conducta Predatoria/fisiología , Suelo/química , Especificidad de la Especie , Incertidumbre
14.
Environ Monit Assess ; 188(5): 315, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27129597

RESUMEN

Alien species can exert negative environmental and socio-economic impacts. Therefore, administrations from different sectors are trying to prevent further introductions, stop the spread of established species, and apply or develop programs to mitigate their impact, to contain the most harmful species, or to eradicate them if possible. Often it is not clear which of the numerous alien species are most important in terms of damage, and therefore, impact scoring systems have been developed to allow a comparison and thus prioritization of species. Here, we present the generic impact scoring system (GISS), which relies on published evidence of environmental and socio-economic impact of alien species. We developed a system of 12 impact categories, for environmental and socio-economic impact, comprising all kinds of impacts that an alien species may exert. In each category, the intensity of impact is quantified by a six-level scale ranging from 0 (no impact detectable) to 5 (the highest impact possible). Such an approach, where impacts are grouped based on mechanisms for environmental impacts and receiving sectors for socio-economy, allows for cross-taxa comparisons and prioritization of the most damaging species. The GISS is simple and transparent, can be conducted with limited funds, and can be applied to a large number of alien species across taxa and environments. Meanwhile, the system was applied to 349 alien animal and plant species. In a comparison with 22 other impact assessment methods, the combination of environmental and socio-economic impact, as well as the possibility of weighting and ranking of the scoring results make GISS the most broadly applicable system.


Asunto(s)
Monitoreo del Ambiente/métodos , Especies Introducidas , Animales , Ambiente , Monitoreo del Ambiente/normas , Plantas
15.
Am Nat ; 185(6): 737-46, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25996859

RESUMEN

Many studies have aimed to identify common predictors of successful introductions of alien species, but the search has had limited success, particularly for animals. Past research focused primarily on mean trait values, even though genetic and phenotypic variation has been shown to play a role in establishment success in plants and some animals (mostly invertebrates). Using a global database describing 511 introduction events representing 97 mammalian species, we show that intraspecific variation in morphological traits is associated with establishment success, even when controlling for the positive effect of propagule pressure. In particular, greater establishment success is associated with more variation in adult body size but, surprisingly, less variation in neonate body size, potentially reflecting distinct trade-offs and constraints that influence population dynamics differently. We find no mean trait descriptors associated with establishment success, although species occupying wider native distribution ranges (which likely have larger niches) are more successful. Our results emphasize the importance of explicitly considering intraspecific variation to predict establishment success in animal species and generally to understand population dynamics. This understanding might improve management of alien species and increase the success of intentional releases, for example, for biocontrol or reintroductions.


Asunto(s)
Especies Introducidas , Mamíferos , Animales , Tamaño Corporal , Bases de Datos Factuales , Ecosistema , Variación Genética , Fenotipo , Dinámica Poblacional , Reproducción , Especificidad de la Especie
16.
Conserv Biol ; 28(5): 1188-94, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24779412

RESUMEN

Non-native species cause changes in the ecosystems to which they are introduced. These changes, or some of them, are usually termed impacts; they can be manifold and potentially damaging to ecosystems and biodiversity. However, the impacts of most non-native species are poorly understood, and a synthesis of available information is being hindered because authors often do not clearly define impact. We argue that explicitly defining the impact of non-native species will promote progress toward a better understanding of the implications of changes to biodiversity and ecosystems caused by non-native species; help disentangle which aspects of scientific debates about non-native species are due to disparate definitions and which represent true scientific discord; and improve communication between scientists from different research disciplines and between scientists, managers, and policy makers. For these reasons and based on examples from the literature, we devised seven key questions that fall into 4 categories: directionality, classification and measurement, ecological or socio-economic changes, and scale. These questions should help in formulating clear and practical definitions of impact to suit specific scientific, stakeholder, or legislative contexts.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Especies Introducidas , Animales , Biodiversidad , Plantas
17.
Nat Commun ; 15(1): 2631, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600085

RESUMEN

Invasive species significantly impact biodiversity and ecosystem services, yet understanding these effects at large spatial scales remains a challenge. Our study addresses this gap by assessing the current and potential future risks posed by 94 invasive species to seven key ecosystem services in Europe. We demonstrate widespread potential impacts, particularly on outdoor recreation, habitat maintenance, crop provisioning, and soil and nitrogen retention. Exposure to invasive species was higher in areas with lower provision of ecosystem services, particularly for regulating and cultural services. Exposure was also high in areas where ecosystem contributions to crop provision and nitrogen retention were at their highest. Notably, regions vital for ecosystem services currently have low invasion suitability, but face an average 77% increase in potential invasion area. Here we show that, while high-value ecosystem service areas at the highest risk represent a small fraction of Europe (0-13%), they are disproportionally important for service conservation. Our study underscores the importance of monitoring and protecting these hotspots to align management strategies with international biodiversity targets, considering both invasion vulnerability and ecosystem service sustainability.


Asunto(s)
Ecosistema , Especies Introducidas , Biodiversidad , Conservación de los Recursos Naturales , Europa (Continente) , Nitrógeno , Animales
18.
Trends Ecol Evol ; 39(5): 409-412, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508924

RESUMEN

Inclusivity is fundamental to progress in understanding and addressing the global phenomena of biological invasions because inclusivity fosters a breadth of perspectives, knowledge, and solutions. Here, we report on how the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) assessment on invasive alien species (IAS) prioritized inclusivity, the benefits of this approach, and the remaining challenges.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Especies Introducidas , Conservación de los Recursos Naturales/métodos , Ecosistema , Política Ambiental
19.
Nat Ecol Evol ; 8(7): 1216-1223, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831016

RESUMEN

Although invasive alien species have long been recognized as a major threat to nature and people, until now there has been no comprehensive global review of the status, trends, drivers, impacts, management and governance challenges of biological invasions. The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Thematic Assessment Report on Invasive Alien Species and Their Control (hereafter 'IPBES invasive alien species assessment') drew on more than 13,000 scientific publications and reports in 15 languages as well as Indigenous and local knowledge on all taxa, ecosystems and regions across the globe. Therefore, it provides unequivocal evidence of the major and growing threat of invasive alien species alongside ambitious but realistic approaches to manage biological invasions. The extent of the threat and impacts has been recognized by the 143 member states of IPBES who approved the summary for policymakers of this assessment. Here, the authors of the IPBES assessment outline the main findings of the IPBES invasive alien species assessment and highlight the urgency to act now.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Especies Introducidas , Animales , Ecosistema
20.
Ecol Lett ; 16(11): 1415, e6, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24034578

RESUMEN

We address criticism that the Transport, Establishment, Abundance, Spread, Impact (TEASI) framework does not facilitate objective mapping of risk assessment methods nor defines best practice. We explain why TEASI is appropriate for mapping, despite inherent challenges, and how TEASI offers considerations for best practices, rather than suggesting one best practice.


Asunto(s)
Especies Introducidas/estadística & datos numéricos , Modelos Biológicos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA