Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Dev Biol ; 360(1): 77-86, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21945863

RESUMEN

The developmental process and unique molecular identity between the many different types of dorsal root ganglion (DRG) sensory neurons generated during embryogenesis provide the cellular basis for the distinct perceptual modalities of somatosensation. The mechanisms leading to the generation of different types of nociceptive sensory neurons remain only partly understood. Here, we show that the transcription factor Cux2 is a novel marker of sensory neuron subpopulations of three main sublineages as defined by the expression of neurotrophic factor receptors TrkA, TrkB and TrkC. In particular, it is expressed in a subpopulation of early TrkA(+) neurons that arise during the early, Ngn1-independent initiated neurogenesis in the DRG. Postnatally, Cux2 marks a specific subtype of A-delta nociceptors as seen by expression of TrkA and NF200 but absence of TrpV1. Analysis of Cux2 mutant mice shows that Cux2 is not required for specification of Trk(+) neuronal subpopulations. However, Cux2 mutant mice are hypersensitive to mechanical, but not to heat or cold stimuli, consistent with a requirement in the process of specification of the mechanoreceptive neuron circuit. Hence, our results show that Cux2 is expressed and may participate in development of a specific subtype of myelinated TrkA(+) nociceptors.


Asunto(s)
Proteínas de Homeodominio/genética , Proteínas de Homeodominio/fisiología , Receptor trkA/fisiología , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/fisiología , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Linaje de la Célula , Cartilla de ADN/genética , Femenino , Ganglios Espinales/citología , Ganglios Espinales/embriología , Ganglios Espinales/fisiología , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Mutación , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/genética , Neurogénesis/fisiología , Nociceptores/clasificación , Nociceptores/citología , Nociceptores/fisiología , Embarazo , Receptor trkB/fisiología , Receptor trkC/fisiología , Células Receptoras Sensoriales/clasificación
2.
Eur J Neurosci ; 34(10): 1529-41, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22103411

RESUMEN

Touch sensation is mediated by specific subtypes of sensory neurons which develop in a hierarchical process from common early progenitor neurons, but the molecular mechanism that underlies diversification of touch-sensitive mechanoreceptive neurons is not fully known. Here, we use genetically manipulated mice to examine whether the transcription factor short stature homeobox 2 (Shox2) participates in the acquisition of neuronal subtypes conveying touch sensation. We show that Shox2 encodes the development of category I low-threshold mechanoreceptive neurons in glabrous skin, i.e. discriminative touch-sensitive neurons which form innervations of epidermal Merkel cell and Meissner corpuscles. In contrast, other sensory fiber endings, including those innervating Pacinian corpuscles, are not dependent on Shox2. Shox2 is expressed in neurons of most or all classes of sensory neurons at early embryonic stages and is later confined to touch-sensitive neurons expressing Ret and/or TrkB. Conditional deletion of Shox2 and analysis of Runx3(-/-);Bax(-/-) mutant mice reveals that Runx3 is suppressing Shox2 while Shox2 is necessary for TrkB expression, and that these interactions are necessary for diversification of TrkB(+) and TrkC(+) mechanoreceptive neurons. In particular, development of TrkB(+)/Ret(+) and TrkB(+)/Ret(-) touch-sensitive neurons is critically dependent on Shox2. Consistently, Shox2 conditional mutant mice demonstrate a dramatic impairment of light touch responses. These results show that Shox2 is required for specification of a subclass of TrkB(+) sensory neurons which convey the sensation of discriminative touch arising from stimuli of the skin.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Células Receptoras Sensoriales/fisiología , Tacto/fisiología , Animales , Conducta Animal/fisiología , Subunidad alfa 3 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Ganglios Espinales/citología , Proteínas de Homeodominio/genética , Humanos , Masculino , Mecanorreceptores/citología , Mecanorreceptores/fisiología , Mecanotransducción Celular/fisiología , Células de Merkel/citología , Células de Merkel/fisiología , Ratones , Ratones Endogámicos C57BL , Nociceptores/citología , Nociceptores/fisiología , Corpúsculos de Pacini/citología , Corpúsculos de Pacini/fisiología , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Receptor trkC/genética , Receptor trkC/metabolismo , Células Receptoras Sensoriales/citología , Percepción del Tacto/fisiología , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
3.
Cell Rep ; 34(13): 108904, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33789110

RESUMEN

GABAergic interneurons migrate long distances through stereotyped migration programs toward specific laminar positions. During their migration, GABAergic interneurons are morphologically alike but then differentiate into a rich array of interneuron subtypes critical for brain function. How interneuron subtypes acquire their final phenotypic traits remains largely unknown. Here, we show that cerebellar molecular layer GABAergic interneurons, derived from the same progenitor pool, use separate migration paths to reach their laminar position and differentiate into distinct basket cell (BC) and stellate cell (SC) GABAergic interneuron subtypes. Using two-photon live imaging, we find that SC final laminar position requires an extra step of tangential migration supported by a subpopulation of glutamatergic granule cells (GCs). Conditional depletion of GCs affects SC differentiation but does not affect BCs. Our results reveal how timely feedforward control of inhibitory interneuron migration path regulates their terminal differentiation and, thus, establishment of the local inhibitory circuit assembly.


Asunto(s)
Diferenciación Celular , Gránulos Citoplasmáticos/metabolismo , Interneuronas/citología , Animales , Axones/metabolismo , Movimiento Celular , Neuronas GABAérgicas/citología , Interneuronas/metabolismo , Ratones Transgénicos
4.
Brain Res Bull ; 75(2-4): 289-94, 2008 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-18331886

RESUMEN

During brain development, the embryonic cerebrospinal fluid (E-CSF) allows brain expansion and promotes neuroepithelial cell survival, proliferation or differentiation. Previous analyses of E-CSF content have revealed a high protein concentration and the presence of membranous particles. The role of these particles in the E-CSF remains poorly investigated. In this study we showed that the E-CSF contains at least two pools of particles: lipoproteins and exosome-like particles. We showed that these two populations of particles strongly interact with neuropithelial cells via an endocytic process, which display regional specificity along the developing neural tube. Finally, we explore and discuss the possibility that these interactions may influence brain development through the regulation of morphogen and growth factor signaling transduction.


Asunto(s)
Encéfalo/efectos de los fármacos , Líquido Cefalorraquídeo/química , Desarrollo Embrionario/efectos de los fármacos , Material Particulado/farmacología , Aminoácidos/metabolismo , Animales , Apolipoproteínas A/genética , Apolipoproteínas A/metabolismo , Encéfalo/embriología , Encéfalo/ultraestructura , Líquido Cefalorraquídeo/metabolismo , Embrión de Pollo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Ratones , Microscopía Electrónica de Transmisión , Proteínas del Tejido Nervioso/metabolismo , Células Neuroepiteliales/efectos de los fármacos , Células Neuroepiteliales/fisiología , Células Neuroepiteliales/ultraestructura , Transducción de Señal/efectos de los fármacos
5.
J Comp Neurol ; 485(3): 240-54, 2005 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-15791640

RESUMEN

We investigated expression patterns of the LIM-homeodomain (LIM-hd) genes x-Lhx1, x-Lhx2, x-Lhx5, and x-Lhx9 in the brainstem of Xenopus laevis during larval development and in the adult. The two groups of paralogous genes, x-Lhx1/x-Lhx5 and x-Lhx2/x-Lhx9, showed fundamentally different expression patterns, being expressed in ventral versus dorsal territories of the midbrain and hindbrain, respectively. Indeed, prominent expression of x-Lhx1/5 was found in the mesencephalic tegmentum and the hindbrain reticular formation, whereas conspicuous x-Lhx2/9 expression was observed in the torus semicircularis and isthmic nucleus. A few shared expression domains for the two pairs of paralogs included the optic tectum and the anterodorsal and pedunculopontine nuclei. In each structure, expression of the two paralogs was almost identical, indicating that the regulation of their expression in this part of the brain has evolved slightly since gene duplication occurred. Notable exceptions included the expression of x-Lhx1 but not x-Lhx5 in the Purkinje cells and the expression of x-Lhx9 but not x-Lhx2 in the lateral line nucleus. The analysis of LIM-hd expression patterns throughout development allowed the origin of given structures in early embryos to be traced back. x-Lhx1 and x-Lhx5 were relevant to locate the cerebellar anlage and to follow morphogenesis of the cerebellar plate and cerebellar nuclei. They also highlighted the rhombomeric organization of the hindbrain. On the other hand, x-Lhx2 and x-Lhx9 showed a dynamic spatiotemporal pattern relative to tectal development and layering, and x-Lhx9 was useful to trace back the origin of the isthmus in early development.


Asunto(s)
Mapeo Encefálico , Regulación del Desarrollo de la Expresión Génica/fisiología , Mesencéfalo/metabolismo , Rombencéfalo/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Perfilación de la Expresión Génica , Marcadores Genéticos/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Larva/genética , Larva/metabolismo , Mesencéfalo/crecimiento & desarrollo , Morfogénesis/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Rombencéfalo/crecimiento & desarrollo , Factores de Transcripción , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo
6.
J Comp Neurol ; 486(3): 281-94, 2005 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-15844169

RESUMEN

Type 1 and type 8 adenylate cyclases, AC1 and AC8, are membrane bound enzymes that produce cAMP in response to calcium entry and could thus control a large number of developmental processes. We provide a detailed spatiotemporal localization of these genes in the mouse brain during embryonic and postnatal life using in situ hybridization. AC1 gene expression begins early in embryonic life (before E13), and its expression is much more widespread than in adults. Transient expression of AC1 is found in the striatum, the dorsal thalamus, the trigeminal nerve nuclei, the Purkinje cells of the cerebellum, the interneurons of the hippocampus, and the retinal ganglion cells. In all these structures, the peak of AC1 gene expression occurs during early postnatal life, decreasing by P10. After P15, AC1 expression is confined to the hippocampus, the cerebral cortex, and to the granule cells of the cerebellum. AC8 gene expression also begins early in embryonic life (E12)--but in a more limited number of regions than in adults. AC8 expression is initially restricted to the epithalamus, the hypothalamus, the superior colliculus, the cerebellar anlage the proliferative zone of the rhombic lip, and the spinal cord. The expression increases and broadens during postnatal life, particularly in the thalamus and the cerebral cortex. A transient peak of AC8 expression is found in layer IV of the somatosensory cortex. Thus, AC1 and AC8 have an early developmental onset with complementary spatiotemporal distribution patterns: AC1 is most broadly distributed in embryonic life, whereas AC8 is most broadly expressed in adulthood. Transient expression of these genes designate areas that may be particularly sensitive to neural activity/calcium-modulated cAMP responses during development.


Asunto(s)
Adenilil Ciclasas/metabolismo , Encéfalo/enzimología , Regulación del Desarrollo de la Expresión Génica/fisiología , Expresión Génica/fisiología , Adenilil Ciclasas/clasificación , Adenilil Ciclasas/genética , Animales , Autorradiografía/métodos , Encéfalo/embriología , Embrión de Mamíferos , Hibridación in Situ/métodos , Ratones , Radioisótopos/metabolismo
7.
Mech Dev ; 118(1-2): 225-8, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12351192

RESUMEN

The expression pattern of Lmx1a, a LIM-homeodomain gene disrupted in the dreher mouse neurological mutant, is described during development. Lmx1a is predominantly expressed in the developing nervous system from embryonic day E8.5 to adulthood, in restricted areas. Major expression domains include the dorsal midline (roof plate) of the neural tube, the cortical hem, the otic vesicles, the developing cerebellum and the notochord. The Lmx1a expression pattern is therefore well correlated with the various aspects of the phenotype of the dreher mutant mice.


Asunto(s)
Proteínas de Homeodominio/biosíntesis , Sistema Nervioso/embriología , Animales , Encéfalo/embriología , Clonación Molecular , ADN Complementario/metabolismo , Hibridación in Situ , Proteínas con Homeodominio LIM , Ratones , Cresta Neural/embriología , Neuronas/metabolismo , Fenotipo , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Factores de Transcripción
8.
Mech Dev ; 117(1-2): 163-72, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12204256

RESUMEN

To shed light on the organisation of the Xenopus laevis telencephalon, we have used two sets of developmental regulators: genes acting in early regional specification (x-Dll3, x-Nkx2.1, x-Emx1, x-Pax6, x-Eomes) or in cell determination (x-Lhx5 and x-Lhx7). After expression patterns analysis, separately or combined, on whole-mount brains and serial sections, we identify the Xenopus pallium and subpallium, and the subdivisions herein. The data show a conservation of the same basic Bauplan for Xenopus forebrain patterning compared to other vertebrates, and suggest the possibility for LIM-homeodomain genes to be candidate downstream target of the regionalization genes. Comparing the relative sizes of the deduced subdivisions, Xenopus seems to have an intermediate phylogenetic position in terms of pallium contribution to the telencephalon, and ventral pallium contribution to the pallium.


Asunto(s)
Prosencéfalo/embriología , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Secuencia de Bases , ADN Complementario/genética , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Hibridación in Situ , Filogenia , Especificidad de la Especie , Telencéfalo/embriología
9.
Mol Neurobiol ; 26(2-3): 269-81, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12428760

RESUMEN

The LIM domain is a cysteine-rich zinc-finger motif found in a large family of proteins. In LIM-homeodomain (LIM-hd) transcription factors and LIM-only (LMO) factors, the LIM domains are responsible for key interactions with co-activators, co-repressors, competitors, and other transcription factors, and are therefore of considerable importance for the regulation of associated transcriptional activity. In this review, the authors describe the progressive discoveries of NLI/Ldb/CLIM, LMO and RLIM, and discuss how the field was very recently updated by the finding that LIM-hd transcriptional activity is controlled by regulated degradation of cofactors and LIM-hd themselves.


Asunto(s)
Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Animales , Proteínas del Ojo/química , Proteínas del Ojo/fisiología , Proteínas de Homeodominio/química , Proteínas de Homeodominio/fisiología , Humanos , Proteínas con Homeodominio LIM , Proteínas de la Membrana , Mapeo de Interacción de Proteínas/métodos , Factores de Transcripción
10.
J Comp Neurol ; 472(1): 52-72, 2004 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-15024752

RESUMEN

We have investigated the expression patterns of five LIM-homeodomain (LIM-hd) genes, x-Lhx1, x-Lhx2, x-Lhx5, x-Lhx7, and x-Lhx9 in the forebrain of the frog Xenopus laevis during larval development and in the adult. The results were analyzed in terms of neuromeric organization of the amphibian brain and of combinatorial LIM-hd code and showed that LIM-hd developmental transcription factors are particularly powerful to highlight the coherence of several groups or nuclei, to delineate subdivisions, and/or to clarify structures that are still a matter of debate. Among other findings, we bring substantial evidence for the following: (1) a dual origin of olfactory bulb neurons, based on x-Lhx5 expression; (2) the existence of a ventral pallium in frog, based on x-Lhx9 expression; (3) a multiple (pallial and subpallial) origin for the nuclei of the amygdaloid complex, based on distinct combinations of the five studied genes; (4) a clear homology between the Xenopus medial pallium and the mammalian hippocampus, based on x-Lhx2 pattern; and (5) a confirmed prosomeric organization of the diencephalon, based on alternating x-Lhx1/5 and x-Lhx2/9 expressions. In addition, the important expression levels for LIM-hd factors found throughout development and in the adult brain suggest a role for these genes in development and maintenance of neuronal specification and phenotype, as for example in the case of x-Lhx7 and cholinergic neurons. Moreover, following LIM-hd patterns throughout development points out to some of the migrations and morphogenetic movements, which give rise to the adult structures. Finally, the detailed description of the LIM-hd code in the developing and adult Xenopus forebrain provides interesting cues for the possible mechanisms of evolution of the vertebrate forebrain.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Genes Homeobox , Marcadores Genéticos/fisiología , Proteínas de Homeodominio/genética , Prosencéfalo/fisiología , Proteínas de Xenopus , Xenopus laevis/genética , Animales , Proteínas de Homeodominio/análisis , Proteínas de Homeodominio/biosíntesis , Proteínas con Homeodominio LIM , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Prosencéfalo/química , Prosencéfalo/crecimiento & desarrollo , Factores de Transcripción/análisis , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
11.
Neuroreport ; 14(18): 2355-8, 2003 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-14663190

RESUMEN

We used two developmental transcription factors, x-Eomes (T-box family) and x-Lhx5 (LIM-homeodomain family), to follow the origin and development of the olfactory bulbs in Xenopus. During embryonic and larval development, x-Eomes and x-Lhx5 were expressed in highly similar patterns, in the lateral and latero-ventral wall of the pallium. In adults, both markers were strongly and specifically expressed in mitral cells, i.e., in the projection neurons of the main and accessory olfactory bulbs. These results demonstrate the pallial origin of the olfactory projecting cells in Xenopus. Combined with previous results suggesting a subpallial origin for olfactory interneurons, these findings emphasize the dual origin of different neuronal populations in the bulbs of anamniotes, and suggest that this organization is a shared feature of tetrapods.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Bulbo Olfatorio/citología , Bulbo Olfatorio/crecimiento & desarrollo , Animales , Larva , Vías Nerviosas/citología , Vías Nerviosas/crecimiento & desarrollo , Telencéfalo/citología , Telencéfalo/crecimiento & desarrollo , Xenopus laevis
13.
Dev Biol ; 291(2): 218-26, 2006 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-16438949

RESUMEN

We present evidence for a temporal control of GABAergic neurotransmitter specification in the basal forebrain orchestrated by the LIM-homeodomain factor Lhx7. In Xenopus, using in vivo overexpression experiments, we show that x-Lhx7 and x-Nkx2.1 inhibit GABAergic specification in the Dlx-expressing areas of the forebrain (subpallium and diencephalon). In addition, x-Lhx7 almost totally represses GABAergic differentiation at early but not late embryonic stages in subpallial mouse primary neurons in culture, indicating that x-Lhx7 is not able to withdraw the GABAergic phenotype once it is acquired. Moreover, anatomical data show striking correlations between x-Lhx7 expression and the GABAergic/cholinergic phenotypes. These functional and anatomical observations suggest a sequential role for x-Lhx7 in neurotransmitter specification. Thus, x-Lhx7 would first prevent a pool of cells to become GABAergic early in development and then promote cholinergic differentiation later on in this pool. We propose two distinct modulatory roles for a single LIM-hd factor, depending on the developmental time window.


Asunto(s)
Proteínas de Homeodominio/fisiología , Prosencéfalo/embriología , Ácido gamma-Aminobutírico/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM , Ratones , Proteínas Nucleares/fisiología , Sistema Nervioso Parasimpático/citología , Factor Nuclear Tiroideo 1 , Factores de Transcripción/fisiología , Xenopus , Proteínas de Xenopus
14.
Development ; 133(15): 2905-13, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16818448

RESUMEN

The roof plate (RP) of the midbrain shows an unusual plasticity, as it is duplicated or interrupted by experimental manipulations involving the mid/hindbrain organizer or FGF8. In previous experiments, we have found that FGF8 induces a local patterning center, the isthmic node, that is essential for the local development of a RP. Here, we show that the plasticity of the midbrain RP derives from two apparently antagonistic influences of FGF8. On the one hand, FGF8 widens beyond the neural folds the competence of the neuroepithelium to develop a RP by inducing the expression of LMX1B and WNT1. Ectopic overexpression of these two factors is sufficient to induce widely the expression of markers of the mature RP in the midbrain. On the other hand, FGF8 exerts a major destabilizing influence on RP maturation by controlling signaling by members of the TGFbeta superfamily belonging to the BMP, GDF and activin subgroups. We show in particular that FGF8 tightly modulates follistatin expression, thus progressively restraining the inhibitory influence of activin B on RP differentiation. These regulations, together with FGF8 triggered apoptosis, allow the formation of a RP progress zone at some distance from the FGF8 source. Posterior elongation of the RP is permitted when the source of FGF8 withdraws. Growth of the posterior midbrain neuroepithelium and convergent extension movements induced by FGF8 both contribute to increase the distance between the source of FGF8 and the maturing RP. Normally, the antagonistic regulatory interactions spread smoothly across the midbrain. Plasticity of midbrain RP differentiation probably results from an experimentally induced imbalance between regulatory pathways.


Asunto(s)
Embrión no Mamífero/fisiología , Factor 8 de Crecimiento de Fibroblastos/fisiología , Mesencéfalo/embriología , Animales , Apoptosis , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/fisiología , Embrión de Pollo , Coturnix , Factor 8 de Crecimiento de Fibroblastos/genética , Folistatina/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Hibridación in Situ , Proteínas con Homeodominio LIM , Plasticidad Neuronal , Transducción de Señal , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA