Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33919977

RESUMEN

Numerous brain diseases are associated with abnormalities in morphology and density of dendritic spines, small membranous protrusions whose structural geometry correlates with the strength of synaptic connections. Thus, the quantitative analysis of dendritic spines remodeling in microscopic images is one of the key elements towards understanding mechanisms of structural neuronal plasticity and bases of brain pathology. In the following article, we review experimental approaches designed to assess quantitative features of dendritic spines under physiological stimuli and in pathological conditions. We compare various methodological pipelines of biological models, sample preparation, data analysis, image acquisition, sample size, and statistical analysis. The methodology and results of relevant experiments are systematically summarized in a tabular form. In particular, we focus on quantitative data regarding the number of animals, cells, dendritic spines, types of studied parameters, size of observed changes, and their statistical significance.


Asunto(s)
Citoesqueleto de Actina/genética , Encefalopatías/terapia , Espinas Dendríticas/fisiología , Citoesqueleto de Actina/fisiología , Animales , Encefalopatías/fisiopatología , Espinas Dendríticas/patología , Modelos Animales de Enfermedad , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Transmisión Sináptica
2.
Anal Chem ; 91(16): 10908-10913, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31353889

RESUMEN

In this Article, a rotating droplet system is used for simultaneous detection of dopamine and serotonin. Carbon nanoparticles functionalized with sulfonic groups on the electrode surface enables potential discrimination between the neurotransmitters and the most common interferences, whereas the efficient and low-volume hydrodynamic system helps to lower the detection limit toward physiologically relevant concentrations. Here, we present results with a 10 nM limit of detection for serotonin and a 100 nM to 2 µM linear response range from the system in a sample containing an equimolar concentrations of dopamine and serotonin and 0.5 mM concentration of both uric and ascorbic acids. Demonstrating the practical applicability of this method, we measure the concentration of serotonin in 70 µL of mice blood serum samples without additional pretreatment.


Asunto(s)
Dopamina/sangre , Técnicas Electroquímicas , Serotonina/sangre , Animales , Carbono/química , Electrodos , Hidrodinámica , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Tamaño de la Partícula , Propiedades de Superficie
3.
Int J Mol Sci ; 20(7)2019 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-30965559

RESUMEN

Ketamine is an N-methyl-d-aspartate receptor antagonist that has gained wide attention as a potent antidepressant. It has also been recently reported to have prophylactic effects in animal models of depression and anxiety. Alterations of neuroplasticity in different brain regions; such as the hippocampus; prefrontal cortex; and amygdala; are a hallmark of stress-related disorders; and such changes may endure beyond the treatment of symptoms. The present study investigated whether a prophylactic injection of ketamine has effects on structural plasticity in the brain in mice that are subjected to chronic unpredictable stress followed by an 8-day recovery period. Ketamine administration (3 mg/kg body weight) 1 h before stress exposure increased the number of resilient animals immediately after the cessation of stress exposure and positively influenced the recovery of susceptible animals to hedonic deficits. At the end of the recovery period; ketamine-treated animals exhibited significant differences in dendritic spine density and dendritic spine morphology in brain regions associated with depression compared with saline-treated animals. These results confirm previous findings of the prophylactic effects of ketamine and provide further evidence of an association between the antidepressant-like effect of ketamine and alterations of structural plasticity in the brain.


Asunto(s)
Antidepresivos/uso terapéutico , Región CA3 Hipocampal/efectos de los fármacos , Depresión/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Ketamina/uso terapéutico , Plasticidad Neuronal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Animales , Conducta Animal , Depresión/patología , Modelos Animales de Enfermedad , Suspensión Trasera/fisiología , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Restricción Física/fisiología , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/patología
4.
Bioinformatics ; 32(16): 2490-8, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27153678

RESUMEN

MOTIVATION: Accurate and effective dendritic spine segmentation from the dendrites remains as a challenge for current neuroimaging research community. In this article, we present a new method (2dSpAn) for 2-d segmentation, classification and analysis of structural/plastic changes of hippocampal dendritic spines. A user interactive segmentation method with convolution kernels is designed to segment the spines from the dendrites. Formal morphological definitions are presented to describe key attributes related to the shape of segmented spines. Spines are automatically classified into one of four classes: Stubby, Filopodia, Mushroom and Spine-head Protrusions. RESULTS: The developed method is validated using confocal light microscopy images of dendritic spines from dissociated hippocampal cultures for: (i) quantitative analysis of spine morphological changes, (ii) reproducibility analysis for assessment of user-independence of the developed software and (iii) accuracy analysis with respect to the manually labeled ground truth images, and also with respect to the available state of the art. The developed method is monitored and used to precisely describe the morphology of individual spines in real-time experiments, i.e. consequent images of the same dendritic fragment. AVAILABILITY AND IMPLEMENTATION: The software and the source code are available at https://sites.google.com/site/2dspan/ under open-source license for non-commercial use. CONTACT: subhadip@cse.jdvu.ac.in or j.wlodarczyk@nencki.gov.pl SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Espinas Dendríticas , Hipocampo , Microscopía Confocal , Dendritas , Reproducibilidad de los Resultados , Programas Informáticos
5.
STAR Protoc ; 3(3): 101659, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36097387

RESUMEN

The complexity of the depressive symptoms observed in humans makes modeling depressive behavior in rodents challenging. Here, we present a highly reproducible protocol to generate mouse models that mimic several aspects of depression, namely anhedonia and loss of motivation. We describe acclimatization of animals and baseline determination, followed by the chronic unpredictable stress (CUS) protocol to induce anhedonic and resilient behaviors. The protocol can generate anhedonic and resilient mice at roughly equal frequencies, providing a reliable model for translational research. For complete details on the use and execution of this protocol, please refer to Baczynska et al. (2022), Bijata et al. (2022), and Krzystyniak et al. (2019).


Asunto(s)
Anhedonia , Estrés Psicológico , Animales , Modelos Animales de Enfermedad , Pruebas de Función Cardíaca , Humanos , Ratones , Ratones Endogámicos C57BL
6.
Sci Rep ; 12(1): 2506, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35169214

RESUMEN

Dystroglycan (DG) is a cell membrane protein that binds to the extracellular matrix in various mammalian tissues. The function of DG has been well defined in embryonic development as well as in the proper migration of differentiated neuroblasts in the central nervous system (CNS). Although DG is known to be a target for matrix metalloproteinase-9 (MMP-9), cleaved in response to enhanced synaptic activity, the role of DG in the structural remodeling of dendritic spines is still unknown. Here, we report for the first time that the deletion of DG in rat hippocampal cell cultures causes pronounced changes in the density and morphology of dendritic spines. Furthermore, we noted a decrease in laminin, one of the major extracellular partners of DG. We have also observed that the lack of DG evokes alterations in the morphological complexity of astrocytes accompanied by a decrease in the level of aquaporin 4 (AQP4), a protein located within astrocyte endfeet surrounding neuronal dendrites and synapses. Regardless of all of these changes, we did not observe any effect of DG silencing on either excitatory or inhibitory synaptic transmission. Likewise, the knockdown of DG had no effect on Psd-95 protein expression. Our results indicate that DG is involved in dendritic spine remodeling that is not functionally reflected. This may suggest the existence of unknown mechanisms that maintain proper synaptic signaling despite impaired structure of dendritic spines. Presumably, astrocytes are involved in these processes.


Asunto(s)
Espinas Dendríticas/metabolismo , Distroglicanos/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal/genética , Transducción de Señal/genética , Animales , Animales Recién Nacidos , Acuaporina 4/metabolismo , Astrocitos/metabolismo , Adhesión Celular/genética , Células Cultivadas , Homólogo 4 de la Proteína Discs Large/metabolismo , Distroglicanos/genética , Técnicas de Silenciamiento del Gen/métodos , Laminina/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratas , Ratas Wistar , Sinapsis/metabolismo , Transfección
7.
Neuroinformatics ; 20(3): 679-698, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34743262

RESUMEN

Three-dimensional segmentation and analysis of dendritic spine morphology involve two major challenges: 1) how to segment individual spines from the dendrites and 2) how to quantitatively assess the morphology of individual spines. To address these two issues, we developed software called 3dSpAn (3-dimensional Spine Analysis), based on implementing a previously published method, 3D multi-scale opening algorithm in shared intensity space. 3dSpAn consists of four modules: a) Preprocessing and Region of Interest (ROI) selection, b) Intensity thresholding and seed selection, c) Multi-scale segmentation, and d) Quantitative morphological feature extraction. In this article, we present the results of segmentation and morphological analysis for different observation methods and conditions, including in vitro and ex vivo imaging with confocal microscopy, and in vivo observations using high-resolution two-photon microscopy. In particular, we focus on software usage, the influence of adjustable parameters on the obtained results, user reproducibility, accuracy analysis, and also include a qualitative comparison with a commercial benchmark. 3dSpAn software is freely available for non-commercial use at www.3dSpAn.org .


Asunto(s)
Espinas Dendríticas , Imagenología Tridimensional , Imagenología Tridimensional/métodos , Microscopía Confocal/métodos , Reproducibilidad de los Resultados , Programas Informáticos
8.
Front Pharmacol ; 13: 933364, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36091748

RESUMEN

Clinical and preclinical studies show evidence that chronic stress or nutritional deficits in dietary zinc (Zn) intake may be risk factors for developing major depressive disorder (MDD). Furthermore, there may be possible links between low serum Zn levels and development of treatment-resistant depression. In the present work, we combined chronic restraint stress (CRS) and a low-zinc diet (ZnD) in mice and carried out a set of behavioral and biochemical studies. The mice were treated with four different antidepressant compounds, namely, ketamine, Ro 25-6981 (Ro), hyperforin and lanicemine (Hyp + Lan), and imipramine (IMI). We show that CRS or ZnD alone or a combination of CRS and ZnD (CRS + ZnD) induces anhedonia observed in the sucrose preference test (SPT). The behavioral effects of CRS were restored by ketamine or IMI. However, only Hyp + Lan restored the deficits in behavioral phenotype in mice subjected to CRS + ZnD. We also showed that the antidepressant-like effects observed in Hyp + Lan-treated CRS + ZnD mice were associated with changes in the morphology of the dendritic spines (restored physiological level) in the hippocampus (Hp). Finally, we studied the metabolism of ketamine and its brain absorption in CRS and CRS + ZnD mice. Our results suggest that CRS + ZnD does not alter the metabolism of ketamine to (2R,6R;2S,6S)-HNK; however, CRS + ZnD can induce altered bioavailability and distribution of ketamine in the Hp and frontal cortex (FC) in CRS + ZnD animals compared to the control and CRS groups.

9.
Cell Rep ; 38(11): 110532, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35294881

RESUMEN

Major depressive disorder is a complex disease resulting from aberrant synaptic plasticity that may be caused by abnormal serotonergic signaling. Using a combination of behavioral, biochemical, and imaging methods, we analyze 5-HT7R/MMP-9 signaling and dendritic spine plasticity in the hippocampus in mice treated with the selective 5-HT7R agonist (LP-211) and in a model of chronic unpredictable stress (CUS)-induced depressive-like behavior. We show that acute 5-HT7R activation induces depressive-like behavior in mice in an MMP-9-dependent manner and that post mortem brain samples from human individuals with depression reveal increased MMP-9 enzymatic activity in the hippocampus. Both pharmacological activation of 5-HT7R and modulation of its downstream effectors as a result of CUS lead to dendritic spine elongation and decreased spine density in this region. Overall, the 5-HT7R/MMP-9 pathway is specifically activated in the CA1 subregion of the hippocampus during chronic stress and is crucial for inducing depressive-like behavior.


Asunto(s)
Región CA1 Hipocampal , Trastorno Depresivo Mayor , Animales , Región CA1 Hipocampal/metabolismo , Trastorno Depresivo Mayor/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Receptores de Serotonina/metabolismo
10.
Cells ; 10(8)2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34440631

RESUMEN

The extracellular matrix (ECM) plays a key role in synaptogenesis and the regulation of synaptic functions in the central nervous system. Recent studies revealed that in addition to dopaminergic and serotoninergic neuromodulatory systems, microglia also contribute to the regulation of ECM remodeling. In the present work, we investigated the physiological role of microglia in the remodeling of perineuronal nets (PNNs), predominantly associated with parvalbumin-immunopositive (PV+) interneurons, and the perisynaptic ECM around pyramidal neurons in the hippocampus. Adult mice were treated with PLX3397 (pexidartinib), as the inhibitor of colony-stimulating factor 1 receptor (CSF1-R), to deplete microglia. Then, confocal analysis of the ECM and synapses was performed. Although the elimination of microglia did not alter the overall number or intensity of PNNs in the CA1 region of the hippocampus, it decreased the size of PNN holes and elevated the expression of the surrounding ECM. In the neuropil area in the CA1 str. radiatum, the depletion of microglia increased the expression of perisynaptic ECM proteoglycan brevican, which was accompanied by the elevated expression of presynaptic marker vGluT1 and the increased density of dendritic spines. Thus, microglia regulate the homeostasis of pre- and postsynaptic excitatory terminals and the surrounding perisynaptic ECM as well as the fine structure of PNNs enveloping perisomatic-predominantly GABAergic-synapses.


Asunto(s)
Región CA1 Hipocampal/patología , Sinapsis Eléctricas/patología , Potenciales Postsinápticos Excitadores , Matriz Extracelular/patología , Microglía/patología , Aminopiridinas/toxicidad , Animales , Brevicano/metabolismo , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Sinapsis Eléctricas/metabolismo , Matriz Extracelular/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones Transgénicos , Microglía/efectos de los fármacos , Microglía/metabolismo , Red Nerviosa/metabolismo , Red Nerviosa/patología , Pirroles/toxicidad , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Proteína Fluorescente Roja
11.
Sci Rep ; 8(1): 17142, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30442964

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

12.
Sci Rep ; 8(1): 3545, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29476060

RESUMEN

The observation and analysis of dendritic spines morphological changes poses a major challenge in neuroscience studies. The alterations of their density and/or morphology are indicators of the cellular processes involved in neural plasticity underlying learning and memory, and are symptomatic in neuropsychiatric disorders. Despite ongoing intense investigations in imaging approaches, the relationship between changes in spine morphology and synaptic function is still unknown. The existing quantitative analyses are difficult to perform and require extensive user intervention. Here, we propose a new method for (1) the three-dimensional (3-D) segmentation of dendritic spines using a multi-scale opening approach and (2) define 3-D morphological attributes of individual spines for the effective assessment of their structural plasticity. The method was validated using confocal light microscopy images of dendritic spines from dissociated hippocampal cultures and brain slices (1) to evaluate accuracy relative to manually labeled ground-truth annotations and relative to the state-of-the-art Imaris tool, (2) to analyze reproducibility of user-independence of the segmentation method, and (3) to quantitatively analyze morphological changes in individual spines before and after chemically induced long-term potentiation. The method was monitored and used to precisely describe the morphology of individual spines in real-time using consecutive images of the same dendritic fragment.


Asunto(s)
Dendritas/ultraestructura , Espinas Dendríticas/ultraestructura , Hipocampo/diagnóstico por imagen , Lóbulo Temporal/ultraestructura , Animales , Dendritas/patología , Espinas Dendríticas/patología , Hipocampo/ultraestructura , Humanos , Imagenología Tridimensional/métodos , Microscopía Confocal , Plasticidad Neuronal/fisiología , Neurociencias/métodos , Ratas , Lóbulo Temporal/patología
13.
Biosensors (Basel) ; 8(1)2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-29301230

RESUMEN

Electronic tongue systems are traditionally used to analyse: food products, water samples and taste masking technologies for pharmaceuticals. In principle, their applications are almost limitless, as they are able to almost completely reduce the impact of interferents and can be applied to distinguish samples of extreme complexity as for example broths from different stages of fermentation. Nevertheless, their applications outside the three principal sample types are, in comparison, rather scarce. In this review, we would like to take a closer look on what are real capabilities of electronic tongue systems, what can be achieved using mixed sensor arrays and by introduction of biosensors or molecularly imprinted polymers in the matrix. We will discuss future directions both in the sense of applications as well as system development in the ever-growing trend of low cost analysis.


Asunto(s)
Nariz Electrónica , Gusto , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA