Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 251: 114504, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36634482

RESUMEN

Lepidopteran species can be both pests and also beneficial pollinators for agricultural crops. However, despite these important roles, the effects of pesticides on this diverse taxa are relatively understudied. To facilitate the assessment of pesticides and other chemical hazards on this taxa, we present a novel bioassay capable of testing chemical sensitivity to lepidopteran larvae through dietary exposure. We used Mamestra brassicae caterpillars as a model lepidopteran and tested their sensitivity for the organophosphate insecticide chlorpyrifos. We exposed larvae to an artificial diet spiked with chlorpyrifos and monitored survival over time, as well as weight change over a 96-hour exposure period. To test the repeatability and reliability of the developed bioassay, the experiment was repeated three times. The survival in time data collected enabled analysis with the General Unified Threshold of Survival (GUTS) model, recently recognized by EFSA as a ready-to-use tool for regulatory purposes. The GUTS modelling was used to derive a set of relevant toxicokinetic and toxicodynamic parameters relating to the larval response to exposure over time. We found that across the three repeats studies there was no more than a threefold difference in LC50 values (13.1, 18.7 and 8.1 mg/Kg) at 48 h and fourfold difference at 96 h, highlighting the repeatability of the bioassay. We also highlighted the potential of the method to observe sub-lethal effects such as changes in weight. Finally, we discuss the applications of this new bioassay method to chemical risk assessments and its potential for use in other scenarios, such as mixture or pulsed exposure testing.


Asunto(s)
Cloropirifos , Mariposas Nocturnas , Plaguicidas , Animales , Cloropirifos/toxicidad , Reproducibilidad de los Resultados , Plaguicidas/toxicidad , Larva , Bioensayo
2.
Sci Total Environ ; 843: 157048, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35779734

RESUMEN

The assessment of chemical mixture toxicity is one of the major challenges in ecotoxicology. Chemicals can interact, leading to more or less effects than expected, commonly named synergism and antagonism respectively. The classic ad hoc approach for the assessment of mixture effects is based on dose-response curves at a single time point, and is limited to identifying a mixture interaction but cannot provide predictions for untested exposure durations, nor for scenarios where exposure varies in time. We here propose a new approach using toxicokinetic-toxicodynamic modelling: The General Unified Threshold model of Survival (GUTS) framework, recently extended for mixture toxicity assessment. We designed a dedicated mechanistic interaction module coupled with the GUTS mixture model to i) identify interactions, ii) test hypotheses to identify which chemical is likely responsible for the interaction, and finally iii) simulate and predict the effect of synergistic and antagonistic mixtures. We tested the modelling approach experimentally with two species (Enchytraeus crypticus and Mamestra brassicae) exposed to different potentially synergistic mixtures (composed of: prochloraz, imidacloprid, cypermethrin, azoxystrobin, chlorothalonil, and chlorpyrifos). Furthermore, we also tested the model with previously published experimental data on two other species (Bombus terrestris and Daphnia magna) exposed to pesticide mixtures (clothianidin, propiconazole, dimethoate, imidacloprid and thiacloprid) found to be synergistic or antagonistic with the classic approach. The results showed an accurate simulation of synergistic and antagonistic effects for the different tested species and mixtures. This modelling approach can identify interactions accounting for the entire time of exposure, and not only at one time point as in the classic approach, and provides predictions of the mixture effect for untested mixture exposure scenarios, including those with time-variable mixture composition.


Asunto(s)
Cloropirifos , Insecticidas , Oligoquetos , Animales , Cloropirifos/toxicidad , Daphnia , Insecticidas/química , Toxicocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA