Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(6): 1364-1379.e14, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32470395

RESUMEN

Small molecule neurotensin receptor 1 (NTSR1) agonists have been pursued for more than 40 years as potential therapeutics for psychiatric disorders, including drug addiction. Clinical development of NTSR1 agonists has, however, been precluded by their severe side effects. NTSR1, a G protein-coupled receptor (GPCR), signals through the canonical activation of G proteins and engages ß-arrestins to mediate distinct cellular signaling events. Here, we characterize the allosteric NTSR1 modulator SBI-553. This small molecule not only acts as a ß-arrestin-biased agonist but also extends profound ß-arrestin bias to the endogenous ligand by selectively antagonizing G protein signaling. SBI-553 shows efficacy in animal models of psychostimulant abuse, including cocaine self-administration, without the side effects characteristic of balanced NTSR1 agonism. These findings indicate that NTSR1 G protein and ß-arrestin activation produce discrete and separable physiological effects, thus providing a strategy to develop safer GPCR-targeting therapeutics with more directed pharmacological action.


Asunto(s)
Conducta Adictiva/metabolismo , Receptores de Neurotensina/metabolismo , beta-Arrestinas/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Conducta Adictiva/tratamiento farmacológico , Línea Celular , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Bibliotecas de Moléculas Pequeñas/farmacología
2.
Cereb Cortex ; 33(9): 5307-5322, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36320163

RESUMEN

The selective vulnerability of brain networks in individuals at risk for Alzheimer's disease (AD) may help differentiate pathological from normal aging at asymptomatic stages, allowing the implementation of more effective interventions. We used a sample of 72 people across the age span, enriched for the APOE4 genotype to reveal vulnerable networks associated with a composite AD risk factor including age, genotype, and sex. Sparse canonical correlation analysis (CCA) revealed a high weight associated with genotype, and subgraphs involving the cuneus, temporal, cingulate cortices, and cerebellum. Adding cognitive metrics to the risk factor revealed the highest cumulative degree of connectivity for the pericalcarine cortex, insula, banks of the superior sulcus, and the cerebellum. To enable scaling up our approach, we extended tensor network principal component analysis, introducing CCA components. We developed sparse regression predictive models with errors of 17% for genotype, 24% for family risk factor for AD, and 5 years for age. Age prediction in groups including cognitively impaired subjects revealed regions not found using only normal subjects, i.e. middle and transverse temporal, paracentral and superior banks of temporal sulcus, as well as the amygdala and parahippocampal gyrus. These modeling approaches represent stepping stones towards single subject prediction.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/patología , Imagen por Resonancia Magnética , Encéfalo/patología , Genotipo , Envejecimiento
3.
Proc Natl Acad Sci U S A ; 116(31): 15686-15695, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31209033

RESUMEN

ßII-spectrin is the generally expressed member of the ß-spectrin family of elongated polypeptides that form micrometer-scale networks associated with plasma membranes. We addressed in vivo functions of ßII-spectrin in neurons by knockout of ßII-spectrin in mouse neural progenitors. ßII-spectrin deficiency caused severe defects in long-range axonal connectivity and axonal degeneration. ßII-spectrin-null neurons exhibited reduced axon growth, loss of actin-spectrin-based periodic membrane skeleton, and impaired bidirectional axonal transport of synaptic cargo. We found that ßII-spectrin associates with KIF3A, KIF5B, KIF1A, and dynactin, implicating spectrin in the coupling of motors and synaptic cargo. ßII-spectrin required phosphoinositide lipid binding to promote axonal transport and restore axon growth. Knockout of ankyrin-B (AnkB), a ßII-spectrin partner, primarily impaired retrograde organelle transport, while double knockout of ßII-spectrin and AnkB nearly eliminated transport. Thus, ßII-spectrin promotes both axon growth and axon stability through establishing the actin-spectrin-based membrane-associated periodic skeleton as well as enabling axonal transport of synaptic cargo.


Asunto(s)
Axones/metabolismo , Encéfalo/metabolismo , Membrana Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Espectrina/metabolismo , Animales , Encéfalo/citología , Membrana Celular/genética , Conectoma , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Espectrina/genética
4.
Proc Natl Acad Sci U S A ; 116(30): 15262-15271, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31285321

RESUMEN

Giant ankyrin-B (ankB) is a neurospecific alternatively spliced variant of ANK2, a high-confidence autism spectrum disorder (ASD) gene. We report that a mouse model for human ASD mutation of giant ankB exhibits increased axonal branching in cultured neurons with ectopic CNS axon connectivity, as well as with a transient increase in excitatory synapses during postnatal development. We elucidate a mechanism normally limiting axon branching, whereby giant ankB localizes to periodic axonal plasma membrane domains through L1 cell-adhesion molecule protein, where it couples microtubules to the plasma membrane and prevents microtubule entry into nascent axon branches. Giant ankB mutation or deficiency results in a dominantly inherited impairment in selected communicative and social behaviors combined with superior executive function. Thus, gain of axon branching due to giant ankB-deficiency/mutation is a candidate cellular mechanism to explain aberrant structural connectivity and penetrant behavioral consequences in mice as well as humans bearing ASD-related ANK2 mutations.


Asunto(s)
Ancirinas/genética , Trastorno del Espectro Autista/genética , Molécula L1 de Adhesión de Célula Nerviosa/genética , Proyección Neuronal , Neuronas/metabolismo , Sinapsis/metabolismo , Empalme Alternativo , Animales , Ancirinas/metabolismo , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/fisiopatología , Conducta Animal , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Conectoma , Modelos Animales de Enfermedad , Función Ejecutiva/fisiología , Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Masculino , Ratones , Ratones Transgénicos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Mutación , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neuronas/patología , Cultivo Primario de Células , Conducta Social , Sinapsis/patología
5.
Alzheimers Dement ; 17(4): 561-573, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33480182

RESUMEN

INTRODUCTION: The study of Alzheimer's disease (AD) has revealed biological pathways with implications for disease neuropathology and pathophysiology. These pathway-level effects may also be mediated by individual characteristics or covariates such as age or sex. Evaluation of AD biological pathways in the context of interactions with these covariates is critical to the understanding of AD as well as the development of model systems used to study the disease. METHODS: Gene set enrichment methods are powerful tools used to interpret gene-level statistics at the level of biological pathways. We introduce a method for quantifying gene set enrichment using likelihood ratio-derived test statistics (gsLRT), which accounts for sample covariates like age and sex. We then use our method to test for age and sex interactions with protein expression levels in AD and to compare the pathway results between human and mouse species. RESULTS: Our method, based on nested logistic regressions is competitive with the existing standard for gene set testing in the context of linear models and complex experimental design. The gene sets we identify as having a significant association with AD-both with and without additional covariate interactions-are validated by previous studies. Differences between gsLRT results on mouse and human datasets are observed. DISCUSSION: Characterizing biological pathways involved in AD builds on the important work involving single gene drivers. Our gene set enrichment method finds pathways that are significantly related to AD while accounting for covariates that may be relevant to disease development. The method highlights commonalities and differences between human AD and mouse models, which may inform the development of higher fidelity models for the study of AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Modelos Estadísticos , Factores de Edad , Animales , Humanos , Ratones , Factores Sexuales
6.
NMR Biomed ; 31(6): e3921, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29675882

RESUMEN

The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non-destructively and three-dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7-T preclinical scanner, we present a novel two-coil system in which each coil is shielded, placed off-isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal-to-noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil-dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two-coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade-offs between imaging throughput and connectivity matrix integrity, studies may seek to clarify how measurement variability, post-processing techniques and biological variability impact mouse brain connectomics.


Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma , Imagen de Difusión Tensora , Animales , Imagenología Tridimensional , Ratones , Relación Señal-Ruido
7.
Neuroimage ; 142: 498-511, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27521741

RESUMEN

Multivariate biomarkers are needed for detecting Alzheimer's disease (AD), understanding its etiology, and quantifying the effect of therapies. Mouse models provide opportunities to study characteristics of AD in well-controlled environments that can help facilitate development of early interventions. The CVN-AD mouse model replicates multiple AD hallmark pathologies, and we identified multivariate biomarkers characterizing a brain circuit disruption predictive of cognitive decline. In vivo and ex vivo magnetic resonance imaging (MRI) revealed that CVN-AD mice replicate the hippocampal atrophy (6%), characteristic of humans with AD, and also present changes in subcortical areas. The largest effect was in the fornix (23% smaller), which connects the septum, hippocampus, and hypothalamus. In characterizing the fornix with diffusion tensor imaging, fractional anisotropy was most sensitive (20% reduction), followed by radial (15%) and axial diffusivity (2%), in detecting pathological changes. These findings were strengthened by optical microscopy and ultrastructural analyses. Ultrastructual analysis provided estimates of axonal density, diameters, and myelination-through the g-ratio, defined as the ratio between the axonal diameter, and the diameter of the axon plus the myelin sheath. The fornix had reduced axonal density (47% fewer), axonal degeneration (13% larger axons), and abnormal myelination (1.5% smaller g-ratios). CD68 staining showed that white matter pathology could be secondary to neuronal degeneration, or due to direct microglial attack. In conclusion, these findings strengthen the hypothesis that the fornix plays a role in AD, and can be used as a disease biomarker and as a target for therapy.


Asunto(s)
Enfermedad de Alzheimer/patología , Imagen de Difusión Tensora/métodos , Fórnix/patología , Hipocampo/patología , Microscopía Electrónica/métodos , Sustancia Blanca/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Animales , Atrofia/patología , Biomarcadores , Modelos Animales de Enfermedad , Fórnix/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Ratones , Ratones Transgénicos , Sustancia Blanca/diagnóstico por imagen
8.
Neurobiol Dis ; 93: 137-45, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27168150

RESUMEN

Rare de novo mutations in genes associated with inherited Mendelian disorders are potential contributors to sporadic disease. DYT1 dystonia is an autosomal dominant, early-onset, generalized dystonia associated with an in-frame, trinucleotide deletion (n. delGAG, p. ΔE 302/303) in the Tor1a gene. Here we examine the significance of a rare missense variant in the Tor1a gene (c. 613T>A, p. F205I), previously identified in a patient with sporadic late-onset focal dystonia, by modeling it in mice. Homozygous F205I mice have motor impairment, reduced steady-state levels of TorsinA, altered corticostriatal synaptic plasticity, and prominent brain imaging abnormalities in areas associated with motor function. Thus, the F205I variant causes abnormalities in domains affected in people and/or mouse models with the DYT1 Tor1a mutation (ΔE). Our findings establish the pathological significance of the F205I Tor1a variant and provide a model with both etiological and phenotypic relevance to further investigate dystonia mechanisms.


Asunto(s)
Trastornos Distónicos/genética , Chaperonas Moleculares/genética , Mutación/genética , Plasticidad Neuronal/genética , Animales , Modelos Animales de Enfermedad , Distonía/genética , Ratones Transgénicos
9.
Cereb Cortex ; 25(11): 4628-37, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26048951

RESUMEN

Interest in structural brain connectivity has grown with the understanding that abnormal neural connections may play a role in neurologic and psychiatric diseases. Small animal connectivity mapping techniques are particularly important for identifying aberrant connectivity in disease models. Diffusion magnetic resonance imaging tractography can provide nondestructive, 3D, brain-wide connectivity maps, but has historically been limited by low spatial resolution, low signal-to-noise ratio, and the difficulty in estimating multiple fiber orientations within a single image voxel. Small animal diffusion tractography can be substantially improved through the combination of ex vivo MRI with exogenous contrast agents, advanced diffusion acquisition and reconstruction techniques, and probabilistic fiber tracking. Here, we present a comprehensive, probabilistic tractography connectome of the mouse brain at microscopic resolution, and a comparison of these data with a neuronal tracer-based connectivity data from the Allen Brain Atlas. This work serves as a reference database for future tractography studies in the mouse brain, and demonstrates the fundamental differences between tractography and neuronal tracer data.


Asunto(s)
Encéfalo/anatomía & histología , Conectoma , Imagen de Difusión por Resonancia Magnética , Vías Nerviosas/anatomía & histología , Animales , Encéfalo/metabolismo , Medios de Contraste , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Neurológicos , Vías Nerviosas/fisiología
10.
Neuroimage ; 117: 408-16, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26037056

RESUMEN

The rhesus macaque (Macaca mulatta) is the most widely used nonhuman primate for modeling the structure and function of the brain. Brain atlases, and particularly those based on magnetic resonance imaging (MRI), have become important tools for understanding normal brain structure, and for identifying structural abnormalities resulting from disease states, exposures, and/or aging. Diffusion tensor imaging (DTI)-based MRI brain atlases are widely used in both human and macaque brain imaging studies because of the unique contrasts, quantitative diffusion metrics, and diffusion tractography that they can provide. Previous MRI and DTI atlases of the rhesus brain have been limited by low contrast and/or low spatial resolution imaging. Here we present a microscopic resolution MRI/DTI atlas of the rhesus brain based on 10 postmortem brain specimens. The atlas includes both structural MRI and DTI image data, a detailed three-dimensional segmentation of 241 anatomic structures, diffusion tractography, cortical thickness estimates, and maps of anatomic variability among atlas specimens. This atlas incorporates many useful features from previous work, including anatomic label nomenclature and ontology, data orientation, and stereotaxic reference frame, and further extends prior analyses with the inclusion of high-resolution multi-contrast image data.


Asunto(s)
Atlas como Asunto , Encéfalo/anatomía & histología , Imagen de Difusión Tensora/métodos , Macaca mulatta/anatomía & histología , Animales , Ontologías Biológicas , Masculino
11.
Hum Brain Mapp ; 35(11): 5667-85, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25044786

RESUMEN

Interest in mapping white matter pathways in the brain has peaked with the recognition that altered brain connectivity may contribute to a variety of neurologic and psychiatric diseases. Diffusion tractography has emerged as a popular method for postmortem brain mapping initiatives, including the ex-vivo component of the human connectome project, yet it remains unclear to what extent computer-generated tracks fully reflect the actual underlying anatomy. Of particular concern is the fact that diffusion tractography results vary widely depending on the choice of acquisition protocol. The two major acquisition variables that consume scan time, spatial resolution, and diffusion sampling, can each have profound effects on the resulting tractography. In this analysis, we determined the effects of the temporal tradeoff between spatial resolution and diffusion sampling on tractography in the ex-vivo rhesus macaque brain, a close primate model for the human brain. We used the wealth of autoradiography-based connectivity data available for the rhesus macaque brain to assess the anatomic accuracy of six time-matched diffusion acquisition protocols with varying balance between spatial and diffusion sampling. We show that tractography results vary greatly, even when the subject and the total acquisition time are held constant. Further, we found that focusing on either spatial resolution or diffusion sampling at the expense of the other is counterproductive. A balanced consideration of both sampling domains produces the most anatomically accurate and consistent results.


Asunto(s)
Mapeo Encefálico , Encéfalo/anatomía & histología , Vías Nerviosas/anatomía & histología , Sustancia Blanca/anatomía & histología , Algoritmos , Animales , Simulación por Computador , Imagen de Difusión Tensora , Procesamiento de Imagen Asistido por Computador , Macaca mulatta , Modelos Neurológicos , Vías Nerviosas/fisiología
12.
J Alzheimers Dis ; 97(2): 635-648, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38160360

RESUMEN

BACKGROUND: Alzheimer's disease (AD) involves brain neuropathologies such as amyloid plaque and hyperphosphorylated tau tangles and is accompanied by cognitive decline. Identifying the biological mechanisms underlying disease onset and progression based on quantifiable phenotypes will help understand disease etiology and devise therapies. OBJECTIVE: Our objective was to identify molecular pathways associated with hallmark AD biomarkers and cognitive status, accounting for variables such as age, sex, education, and APOE genotype. METHODS: We introduce a pathway-based statistical approach, extending the gene set likelihood ratio test to continuous phenotypes. We first analyzed independently each of the three phenotypes (amyloid-ß, tau, cognition) using continuous gene set likelihood ratio tests to account for covariates, including age, sex, education, and APOE genotype. The analysis involved 634 subjects with data available for all three phenotypes, allowing for the identification of common pathways. RESULTS: We identified 14 pathways significantly associated with amyloid-ß; 5 associated with tau; and 174 associated with cognition, which showed a larger number of pathways compared to biomarkers. A single pathway, vascular endothelial growth factor receptor binding (VEGF-RB), exhibited associations with all three phenotypes. Mediation analysis showed that among the VEGF-RB family genes, ITGA5 mediates the relationship between cognitive scores and pathological biomarkers. CONCLUSIONS: We presented a new statistical approach linking continuous phenotypes, gene expression across pathways, and covariates like sex, age, and education. Our results reinforced VEGF RB2's role in AD cognition and demonstrated ITGA5's significant role in mediating the AD pathology-cognition connection.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/patología , Factor A de Crecimiento Endotelial Vascular/genética , Proteínas tau/genética , Funciones de Verosimilitud , Péptidos beta-Amiloides , Disfunción Cognitiva/psicología , Biomarcadores , Apolipoproteínas E
13.
PLoS One ; 19(5): e0303288, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38781243

RESUMEN

BACKGROUND: Brain region segmentation and morphometry in humanized apolipoprotein E (APOE) mouse models with a human NOS2 background (HN) contribute to Alzheimer's disease (AD) research by demonstrating how various risk factors affect the brain. Photon-counting detector (PCD) micro-CT provides faster scan times than MRI, with superior contrast and spatial resolution to energy-integrating detector (EID) micro-CT. This paper presents a pipeline for mouse brain imaging, segmentation, and morphometry from PCD micro-CT. METHODS: We used brains of 26 mice from 3 genotypes (APOE22HN, APOE33HN, APOE44HN). The pipeline included PCD and EID micro-CT scanning, hybrid (PCD and EID) iterative reconstruction, and brain region segmentation using the Small Animal Multivariate Brain Analysis (SAMBA) tool. We applied SAMBA to transfer brain region labels from our new PCD CT atlas to individual PCD brains via diffeomorphic registration. Region-based and voxel-based analyses were used for comparisons by genotype and sex. RESULTS: Together, PCD and EID scanning take ~5 hours to produce images with a voxel size of 22 µm, which is faster than MRI protocols for mouse brain morphometry with voxel size above 40 µm. Hybrid iterative reconstruction generates PCD images with minimal artifacts and higher spatial resolution and contrast than EID images. Our PCD atlas is qualitatively and quantitatively similar to the prior MRI atlas and successfully transfers labels to PCD brains in SAMBA. Male and female mice had significant volume differences in 26 regions, including parts of the entorhinal cortex and cingulate cortex. APOE22HN brains were larger than APOE44HN brains in clusters from the hippocampus, a region where atrophy is associated with AD. CONCLUSIONS: This work establishes a pipeline for mouse brain analysis using PCD CT, from staining to imaging and labeling brain images. Our results validate the effectiveness of the approach, setting a foundation for research on AD mouse models while reducing scanning durations.


Asunto(s)
Encéfalo , Microtomografía por Rayos X , Animales , Encéfalo/diagnóstico por imagen , Ratones , Microtomografía por Rayos X/métodos , Femenino , Masculino , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Procesamiento de Imagen Asistido por Computador/métodos , Apolipoproteínas E/genética , Ratones Transgénicos
14.
Magn Reson Imaging ; 114: 110251, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39362319

RESUMEN

Alzheimer's disease (AD) presents complex challenges due to its multifactorial nature, poorly understood etiology, and late detection. The mechanisms through which genetic and modifiable risk factors influence disease susceptibility are under intense investigation, with APOE being the major genetic risk factor for late onset AD. Yet the impact of unique risk factors on brain networks is difficult to disentangle, and their interactions remain unclear. To model multiple risk factors, including APOE genotype, age, sex, diet, and immunity we used a cross sectional design, leveraging mice expressing human APOE and NOS2 genes, conferring a reduced immune response compared to mouse Nos2. We used network topological and GraphClass analyses of brain connectomes derived from accelerated diffusion-weighted MRI to assess the global and local impact of risk factors, in the absence of AD pathology. Aging and a high-fat diet impacted extensive networks comprising AD-vulnerable regions, including the temporal association cortex, amygdala, and the periaqueductal gray, involved in stress responses. Sex impacted networks including sexually dimorphic regions (thalamus, insula, hypothalamus) and key memory-processing areas (fimbria, septum). APOE genotypes modulated connectivity in memory, sensory, and motor regions, while diet and immunity both impacted the insula and hypothalamus. Notably, these risk factors converged on a circuit comprising 63 of 54,946 total connections (0.11% of the connectome), highlighting shared vulnerability amongst multiple AD risk factors in regions essential for sensory integration, emotional regulation, decision making, motor coordination, memory, homeostasis, and interoception. APOE genotype specific immune signatures support the design of interventions tailored to risk profiles. Sparse Canonical Correlation Analysis (CCA) including spatial memory as a risk factor resulted in a network comprising 80 edges, showing significant overlap with risk-associated networks from GraphClass. The largest overlaps were observed with networks impacted by diet (47 edges), immunity (39 edges), APOE3 vs 4 (26 edges), sex (23 edges), and age (19 edges), the resulting networks supporting the use of sensory cues in spatial memory retrieval. These network-based biomarkers hold translational value for distinguishing high-risk versus low-risk participants at preclinical AD stages, suggest circuits as potential therapeutic targets, and advance our understanding of network fingerprints associated with AD risk.


Asunto(s)
Alelos , Enfermedad de Alzheimer , Apolipoproteínas E , Encéfalo , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Animales , Ratones , Humanos , Encéfalo/diagnóstico por imagen , Masculino , Femenino , Apolipoproteínas E/genética , Factores de Riesgo , Ratones Transgénicos , Conectoma , Genotipo , Envejecimiento , Red Nerviosa/diagnóstico por imagen , Imagen por Resonancia Magnética
15.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979335

RESUMEN

Alzheimer's disease currently has no cure and is usually detected too late for interventions to be effective. In this study we have focused on cognitively normal subjects to study the impact of risk factors on their long-range brain connections. To detect vulnerable connections, we devised a multiscale, hierarchical method for spatial clustering of the whole brain tractogram and examined the impact of age and APOE allelic variation on cognitive abilities and bundle properties including texture e.g., mean fractional anisotropy, variability, and geometric properties including streamline length, volume, and shape, as well as asymmetry. We found that the third level subdivision in the bundle hierarchy provided the most sensitive ability to detect age and genotype differences associated with risk factors. Our results indicate that frontal bundles were a major age predictor, while the occipital cortex and cerebellar connections were important risk predictors that were heavily genotype dependent, and showed accelerated decline in fractional anisotropy, shape similarity, and increased asymmetry. Cognitive metrics related to olfactory memory were mapped to bundles, providing possible early markers of neurodegeneration. In addition, physiological metrics such as diastolic blood pressure were associated with changes in white matter tracts. Our novel method for a data driven analysis of sensitive changes in tractography may differentiate populations at risk for AD and isolate specific vulnerable networks.

16.
bioRxiv ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39005377

RESUMEN

Alzheimer's disease (AD) presents complex challenges due to its multifactorial nature, poorly understood etiology, and late detection. The mechanisms through which genetic, fixed and modifiable risk factors influence susceptibility to AD are under intense investigation, yet the impact of unique risk factors on brain networks is difficult to disentangle, and their interactions remain unclear. To model multiple risk factors including APOE genotype, age, sex, diet, and immunity we leveraged mice expressing the human APOE and NOS2 genes, conferring a reduced immune response compared to mouse Nos2. Employing graph analyses of brain connectomes derived from accelerated diffusion-weighted MRI, we assessed the global and local impact of risk factors in the absence of AD pathology. Aging and a high-fat diet impacted extensive networks comprising AD-vulnerable regions, including the temporal association cortex, amygdala, and the periaqueductal gray, involved in stress responses. Sex impacted networks including sexually dimorphic regions (thalamus, insula, hypothalamus) and key memory-processing areas (fimbria, septum). APOE genotypes modulated connectivity in memory, sensory, and motor regions, while diet and immunity both impacted the insula and hypothalamus. Notably, these risk factors converged on a circuit comprising 63 of 54,946 total connections (0.11% of the connectome), highlighting shared vulnerability amongst multiple AD risk factors in regions essential for sensory integration, emotional regulation, decision making, motor coordination, memory, homeostasis, and interoception. These network-based biomarkers hold translational value for distinguishing high-risk versus low-risk participants at preclinical AD stages, suggest circuits as potential therapeutic targets, and advance our understanding of network fingerprints associated with AD risk. Significance Statement: Current interventions for Alzheimer's disease (AD) do not provide a cure, and are delivered years after neuropathological onset. Addressing the impact of risk factors on brain networks holds promises for early detection, prevention, and revealing putative therapeutic targets at preclinical stages. We utilized six mouse models to investigate the impact of factors, including APOE genotype, age, sex, immunity, and diet, on brain networks. Large structural connectomes were derived from high resolution compressed sensing diffusion MRI. A highly parallelized graph classification identified subnetworks associated with unique risk factors, revealing their network fingerprints, and a common network composed of 63 connections with shared vulnerability to all risk factors. APOE genotype specific immune signatures support the design of interventions tailored to risk profiles.

17.
Brain Struct Funct ; 229(1): 231-249, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38091051

RESUMEN

APOE allelic variation is critical in brain aging and Alzheimer's disease (AD). The APOE2 allele associated with cognitive resilience and neuroprotection against AD remains understudied. We employed a multipronged approach to characterize the transition from middle to old age in mice with APOE2 allele, using behavioral assessments, image-derived morphometry and diffusion metrics, structural connectomics, and blood transcriptomics. We used sparse multiple canonical correlation analyses (SMCCA) for integrative modeling, and graph neural network predictions. Our results revealed brain sub-networks associated with biological traits, cognitive markers, and gene expression. The cingulate cortex emerged as a critical region, demonstrating age-associated atrophy and diffusion changes, with higher fractional anisotropy in males and middle-aged subjects. Somatosensory and olfactory regions were consistently highlighted, indicating age-related atrophy and sex differences. The hippocampus exhibited significant volumetric changes with age, with differences between males and females in CA3 and CA1 regions. SMCCA underscored changes in the cingulate cortex, somatosensory cortex, olfactory regions, and hippocampus in relation to cognition and blood-based gene expression. Our integrative modeling in aging APOE2 carriers revealed a central role for changes in gene pathways involved in localization and the negative regulation of cellular processes. Our results support an important role of the immune system and response to stress. This integrative approach offers novel insights into the complex interplay among brain connectivity, aging, and sex. Our study provides a foundation for understanding the impact of APOE2 allele on brain aging, the potential for detecting associated changes in blood markers, and revealing novel therapeutic intervention targets.


Asunto(s)
Enfermedad de Alzheimer , Conectoma , Humanos , Persona de Mediana Edad , Femenino , Masculino , Ratones , Animales , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E2/metabolismo , Alelos , Encéfalo/metabolismo , Envejecimiento/genética , Cognición , Perfilación de la Expresión Génica , Atrofia/patología
18.
Biomedicines ; 12(1)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255252

RESUMEN

Age-related macular degeneration (AMD) has recently been linked to cognitive impairment. We hypothesized that AMD modifies the brain aging trajectory, and we conducted a longitudinal diffusion MRI study on 40 participants (20 with AMD and 20 controls) to reveal the location, extent, and dynamics of AMD-related brain changes. Voxel-based analyses at the first visit identified reduced volume in AMD participants in the cuneate gyrus, associated with vision, and the temporal and bilateral cingulate gyrus, linked to higher cognition and memory. The second visit occurred 2 years after the first and revealed that AMD participants had reduced cingulate and superior frontal gyrus volumes, as well as lower fractional anisotropy (FA) for the bilateral occipital lobe, including the visual and the superior frontal cortex. We detected faster rates of volume and FA reduction in AMD participants in the left temporal cortex. We identified inter-lingual and lingual-cerebellar connections as important differentiators in AMD participants. Bundle analyses revealed that the lingual gyrus had a lower streamline length in the AMD participants at the first visit, indicating a connection between retinal and brain health. FA differences in select inter-lingual and lingual cerebellar bundles at the second visit showed downstream effects of vision loss. Our analyses revealed widespread changes in AMD participants, beyond brain networks directly involved in vision processing.

19.
Neuroimage ; 71: 196-206, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23353030

RESUMEN

There has been growing interest in the role of postnatal brain development in the etiology of several neurologic diseases. The rat has long been recognized as a powerful model system for studying neuropathology and the safety of pharmacologic treatments. However, the complex spatiotemporal changes that occur during rat neurodevelopment remain to be elucidated. This work establishes the first magnetic resonance histology (MRH) atlas of the developing rat brain, with an emphasis on quantitation. The atlas comprises five specimens at each of nine time points, imaged with eight distinct MR contrasts and segmented into 26 developmentally defined brain regions. The atlas was used to establish a timeline of morphometric changes and variability throughout neurodevelopment and represents a quantitative database of rat neurodevelopment for characterizing rat models of human neurologic disease.


Asunto(s)
Anatomía Artística , Atlas como Asunto , Encéfalo/crecimiento & desarrollo , Imagen por Resonancia Magnética , Animales , Procesamiento de Imagen Asistido por Computador , Masculino , Ratas , Ratas Wistar
20.
bioRxiv ; 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37662249

RESUMEN

Background: Alzheimer's disease involves brain pathologies such as amyloid plaque depositions and hyperphosphorylated tau tangles and is accompanied by cognitive decline. Identifying the biological mechanisms underlying disease onset and progression based on quantifiable phenotypes will help understand the disease etiology and devise therapies. Objective: Our objective was to identify molecular pathways associated with AD biomarkers (Amyloid-ß and tau) and cognitive status (MMSE) accounting for variables such as age, sex, education, and APOE genotype. Methods: We introduce a novel pathway-based statistical approach, extending the gene set likelihood ratio test to continuous phenotypes. We first analyzed independently each of the three phenotypes (Amyloid-ß, tau, cognition), using continuous gene set likelihood ratio tests to account for covariates, including age, sex, education, and APOE genotype. The analysis involved a large sample size with data available for all three phenotypes, allowing for the identification of common pathways. Results: We identified 14 pathways significantly associated with Amyloid-ß, 5 associated with tau, and 174 associated with MMSE. Surprisingly, the MMSE outcome showed a larger number of significant pathways compared to biomarkers. A single pathway, vascular endothelial growth factor receptor binding (VEGF-RB), exhibited significant associations with all three phenotypes. Conclusions: The study's findings highlight the importance of the VEGF signaling pathway in aging in AD. The complex interactions within the VEGF signaling family offer valuable insights for future therapeutic interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA