Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Development ; 142(17): 3021-32, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26209646

RESUMEN

The optic vesicle comprises a pool of bi-potential progenitor cells from which the retinal pigment epithelium (RPE) and neural retina fates segregate during ocular morphogenesis. Several transcription factors and signaling pathways have been shown to be important for RPE maintenance and differentiation, but an understanding of the initial fate specification and determination of this ocular cell type is lacking. We show that Yap/Taz-Tead activity is necessary and sufficient for optic vesicle progenitors to adopt RPE identity in zebrafish. A Tead-responsive transgene is expressed within the domain of the optic cup from which RPE arises, and Yap immunoreactivity localizes to the nuclei of prospective RPE cells. yap (yap1) mutants lack a subset of RPE cells and/or exhibit coloboma. Loss of RPE in yap mutants is exacerbated in combination with taz (wwtr1) mutant alleles such that, when Yap and Taz are both absent, optic vesicle progenitor cells completely lose their ability to form RPE. The mechanism of Yap-dependent RPE cell type determination is reliant on both nuclear localization of Yap and interaction with a Tead co-factor. In contrast to loss of Yap and Taz, overexpression of either protein within optic vesicle progenitors leads to ectopic pigmentation in a dosage-dependent manner. Overall, this study identifies Yap and Taz as key early regulators of RPE genesis and provides a mechanistic framework for understanding the congenital ocular defects of Sveinsson's chorioretinal atrophy and congenital retinal coloboma.


Asunto(s)
Linaje de la Célula , Proteínas de Unión al ADN/metabolismo , Células Epiteliales/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Epitelio Pigmentado de la Retina/citología , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Alelos , Animales , Apoptosis/genética , Núcleo Celular/metabolismo , Proliferación Celular , Coloboma/patología , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Células HEK293 , Humanos , Morfogénesis/genética , Mutación , Fenotipo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Epitelio Pigmentado de la Retina/trasplante , Transducción de Señal/genética , Factores de Transcripción de Dominio TEA , Transactivadores/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Transgenes , Regulación hacia Arriba , Proteínas Señalizadoras YAP , Pez Cebra/genética , Proteínas de Pez Cebra/genética
2.
Semin Cell Dev Biol ; 21(3): 269-75, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20045078

RESUMEN

Kinetochores have been proposed to play multiple roles in mitotic chromosome alignment, including initial microtubule (MT) capture, monitoring MT attachments, prometaphase and anaphase chromosome movement and tension generation at metaphase. In addition, kinetochores are essential components of the spindle assembly checkpoint (SAC), and couple chromosome alignment with SAC silencing at metaphase. Although the molecular details of these activities remain under investigation, cytoplasmic dynein has been implicated in several aspects of MT and SAC regulation. Recent work clarifies the contribution of dynein to MT interactions and to events that drive anaphase onset. This review summarizes these studies and provides new models for dynein function.


Asunto(s)
Dineínas/fisiología , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Anafase , Animales , Aspergillus/genética , Citoplasma/metabolismo , Silenciador del Gen , Humanos , Metafase , Mitosis , Modelos Biológicos , Fosforilación
3.
J Biol Chem ; 286(23): 20769-77, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21507953

RESUMEN

Kinetochore dynein has been implicated in microtubule capture, correcting inappropriate microtubule attachments, chromosome movement, and checkpoint silencing. It remains unclear how dynein coordinates this diverse set of functions. Phosphorylation is responsible for some dynein heterogeneity (Whyte, J., Bader, J. R., Tauhata, S. B., Raycroft, M., Hornick, J., Pfister, K. K., Lane, W. S., Chan, G. K., Hinchcliffe, E. H., Vaughan, P. S., and Vaughan, K. T. (2008) J. Cell Biol. 183, 819-834), and phosphorylated and dephosphorylated forms of dynein coexist at prometaphase kinetochores. In this study, we measured the impact of inhibiting polo-like kinase 1 (Plk1) on both dynein populations. Phosphorylated dynein was ablated at kinetochores after inhibiting Plk1 with a small molecule inhibitor (5-Cyano-7-nitro-2-(benzothiazolo-N-oxide)-carboxamide) or chemical genetic approaches. The total complement of kinetochore dynein was also reduced but not eliminated, reflecting the presence of some dephosphorylated dynein after Plk1 inhibition. Although Plk1 inhibition had a profound effect on dynein, kinetochore populations of dynactin, spindly, and zw10 were not reduced. Plk1-independent dynein was reduced after p150(Glued) depletion, consistent with the binding of dephosphorylated dynein to dynactin. Plk1 phosphorylated dynein intermediate chains at Thr-89 in vitro and generated the phospho-Thr-89 phospho-epitope on recombinant dynein intermediate chains. Finally, inhibition of Plk1 induced defects in microtubule capture and persistent microtubule attachment, suggesting a role for phosphorylated dynein in these functions during prometaphase. These findings suggest that Plk1 is a dynein kinase required for recruitment of phosphorylated dynein to kinetochores.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Dineínas/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Complejo Dinactina , Dineínas/genética , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Fosforilación/fisiología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Quinasa Tipo Polo 1
4.
Cell Motil Cytoskeleton ; 65(8): 595-613, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18481305

RESUMEN

Taxol functions to suppress the dynamic behavior of individual microtubules, and induces multipolar mitotic spindles. However, little is known about the mechanisms by which taxol disrupts normal bipolar spindle assembly in vivo. Using live imaging of GFP-alpha tubulin expressing cells, we examined spindle assembly after taxol treatment. We find that as taxol-treated cells enter mitosis, there is a dramatic re-distribution of the microtubule network from the centrosomes to the cell cortex. As they align there, the cortical microtubules recruit NuMA to their embedded ends, followed by the kinesin motor HSET. These cortical microtubules then bud off to form cytasters, which fuse into multipolar spindles. Cytoplasmic dynein and dynactin do not re-localize to cortical microtubules, and disruption of dynein/dynactin interactions by over-expression of p50 "dynamitin" does not prevent cytaster formation. Taxol added well before spindle poles begin to form induces multipolarity, but taxol added after nascent spindle poles are visible-but before NEB is complete-results in bipolar spindles. Our results suggest that taxol prevents rapid transport of key components, such as NuMA, to the nascent spindle poles. The net result is loss of mitotic spindle pole cohesion, microtubule re-distribution, and cytaster formation.


Asunto(s)
Paclitaxel/farmacología , Huso Acromático/metabolismo , Animales , Línea Celular , Centrosoma/efectos de los fármacos , Centrosoma/metabolismo , Complejo Dinactina , Dineínas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Huso Acromático/efectos de los fármacos , Transfección , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacología
5.
Vision Res ; 75: 37-43, 2012 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23099049

RESUMEN

Multiple proteins are targeted to photoreceptor outer segments (OSs) where they function in phototransduction. Intraflagellar transport (IFT), a highly conserved bidirectional transport pathway occurring along the microtubules of the ciliary axoneme has been implicated in OS trafficking. The canonical anterograde motor for IFT is the heterotrimeric kinesin II or KIF3 complex. Previous work from our laboratory has demonstrated a role for an additional kinesin 2 family motor, the homodimeric KIF17. To gain a better understanding of KIF17 function in photoreceptor OS we utilized transgenic zebrafish expressing zfKIF17-GFP to assess the localization and dynamics of zfKIF17. Our data indicate that both endogenous KIF17 and KIF17-GFP are associated with the axoneme of zebrafish cones at both early (5dpf) and late (21 dfp) stages of development. Strikingly, KIF17-GFP accumulates at the OS distal tip in a phenomenon referred to as "tipping". Tipping occurs in the large majority of photoreceptors and also occurs when mammalian KIF17-mCherry is expressed in ciliated epithelial cells in culture. In some cases KIF17-GFP is shed with the OS tip as part of the disc shedding process. We have also found that KIF17-GFP moves within the OS at rates consistent with those observed for IFT and other kinesins.


Asunto(s)
Cinesinas/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Células Cultivadas , Cilios/metabolismo , Inmunohistoquímica , Transporte de Proteínas , Pez Cebra/embriología , Pez Cebra/metabolismo
6.
Mol Biol Cell ; 22(18): 3318-30, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21775627

RESUMEN

Aurora B (AurB) is a mitotic kinase responsible for multiple aspects of mitotic progression, including assembly of the outer kinetochore. Cytoplasmic dynein is an abundant kinetochore protein whose recruitment to kinetochores requires phosphorylation. To assess whether AurB regulates recruitment of dynein to kinetochores, we inhibited AurB using ZM447439 or a kinase-dead AurB construct. Inhibition of AurB reduced accumulation of dynein at kinetochores substantially; however, this reflected a loss of dynein-associated proteins rather than a defect in dynein phosphorylation. We determined that AurB inhibition affected recruitment of the ROD, ZW10, zwilch (RZZ) complex to kinetochores but not zwint-1 or more-proximal kinetochore proteins. AurB phosphorylated zwint-1 but not ZW10 in vitro, and three novel phosphorylation sites were identified by tandem mass spectrometry analysis. Expression of a triple-Ala zwint-1 mutant blocked kinetochore assembly of RZZ-dependent proteins and induced defects in chromosome movement during prometaphase. Expression of a triple-Glu zwint-1 mutant rendered cells resistant to AurB inhibition during prometaphase. However, cells expressing the triple-Glu mutant failed to satisfy the spindle assembly checkpoint (SAC) at metaphase because poleward streaming of dynein/dynactin/RZZ was inhibited. These studies identify zwint-1 as a novel AurB substrate required for kinetochore assembly and for proper SAC silencing at metaphase.


Asunto(s)
Dineínas Citoplasmáticas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Sustitución de Aminoácidos , Animales , Aurora Quinasa B , Aurora Quinasas , Benzamidas/farmacología , Complejo Dinactina , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Puntos de Control de la Fase M del Ciclo Celular , Metafase , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Quinazolinas/farmacología , Ratas , Análisis de la Célula Individual , Imagen de Lapso de Tiempo
7.
J Cell Biol ; 183(5): 819-34, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19029334

RESUMEN

Cytoplasmic dynein functions at several sites during mitosis; however, the basis of targeting to each site remains unclear. Tandem mass spectrometry analysis of mitotic dynein revealed a phosphorylation site in the dynein intermediate chains (ICs) that mediates binding to kinetochores. IC phosphorylation directs binding to zw10 rather than dynactin, and this interaction is needed for kinetochore dynein localization. Phosphodynein associates with kinetochores from nuclear envelope breakdown to metaphase, but bioriented microtubule (MT) attachment and chromosome alignment induce IC dephosphorylation. IC dephosphorylation stimulates binding to dynactin and poleward streaming. MT depolymerization, release of kinetochore tension, and a PP1-gamma mutant each inhibited IC dephosphorylation, leading to the retention of phosphodynein at kinetochores and reduced poleward streaming. The depletion of kinetochore dynactin by moderate levels of p50(dynamitin) expression disrupted the ability of dynein to remove checkpoint proteins by streaming at metaphase but not other aspects of kinetochore dynein activity. Together, these results suggest a new model for localization of kinetochore dynein and the contribution of kinetochore dynactin.


Asunto(s)
Citoplasma/metabolismo , Dineínas/metabolismo , Cinetocoros/metabolismo , Mitosis , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Corriente Citoplasmática , Complejo Dinactina , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mutación , Fosforilación , Proteína Fosfatasa 1/metabolismo , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA