Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33931502

RESUMEN

Membraneless organelles containing the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) are a common feature of organisms utilizing CO2 concentrating mechanisms to enhance photosynthetic carbon acquisition. In cyanobacteria and proteobacteria, the Rubisco condensate is encapsulated in a proteinaceous shell, collectively termed a carboxysome, while some algae and hornworts have evolved Rubisco condensates known as pyrenoids. In both cases, CO2 fixation is enhanced compared with the free enzyme. Previous mathematical models have attributed the improved function of carboxysomes to the generation of elevated CO2 within the organelle via a colocalized carbonic anhydrase (CA) and inwardly diffusing HCO3-, which have accumulated in the cytoplasm via dedicated transporters. Here, we present a concept in which we consider the net of two protons produced in every Rubisco carboxylase reaction. We evaluate this in a reaction-diffusion compartment model to investigate functional advantages these protons may provide Rubisco condensates and carboxysomes, prior to the evolution of HCO3- accumulation. Our model highlights that diffusional resistance to reaction species within a condensate allows Rubisco-derived protons to drive the conversion of HCO3- to CO2 via colocalized CA, enhancing both condensate [CO2] and Rubisco rate. Protonation of Rubisco substrate (RuBP) and product (phosphoglycerate) plays an important role in modulating internal pH and CO2 generation. Application of the model to putative evolutionary ancestors, prior to contemporary cellular HCO3- accumulation, revealed photosynthetic enhancements along a logical sequence of advancements, via Rubisco condensation, to fully formed carboxysomes. Our model suggests that evolution of Rubisco condensation could be favored under low CO2 and low light environments.


Asunto(s)
Ciclo del Carbono/genética , Dióxido de Carbono/metabolismo , Fotosíntesis/genética , Ribulosa-Bifosfato Carboxilasa/química , Synechococcus/genética , Carbono/química , Carbono/metabolismo , Dióxido de Carbono/química , Anhidrasas Carbónicas , Orgánulos/metabolismo , Proteobacteria/química , Proteobacteria/metabolismo , Protones , Ribulosa-Bifosfato Carboxilasa/metabolismo , Synechococcus/química , Synechococcus/metabolismo
2.
J Exp Bot ; 74(2): 562-580, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36412307

RESUMEN

Rubisco catalysis is complex and includes an activation step through the formation of a carbamate at the conserved active site lysine residue and the formation of a highly reactive enediol that is the key to its catalytic reaction. The formation of this enediol is both the basis of its success and its Achilles' heel, creating imperfections to its catalytic efficiency. While Rubisco originally evolved in an atmosphere of high CO2, the earth's multiple oxidation events provided challenges to Rubisco through the fixation of O2 that competes with CO2 at the active site. Numerous catalytic screens across the Rubisco superfamily have identified significant variation in catalytic properties that have been linked to large and small subunit sequences. Despite this, we still have a rudimentary understanding of Rubisco's catalytic mechanism and how the evolution of kinetic properties has occurred. This review identifies the lysine base that functions both as an activator and a proton abstractor to create the enediol as a key to understanding how Rubisco may optimize its kinetic properties. The ways in which Rubisco and its partners have overcome catalytic and activation imperfections and thrived in a world of high O2, low CO2, and variable climatic regimes is remarkable.


Asunto(s)
Dióxido de Carbono , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/metabolismo , Lisina , Catálisis , Dominio Catalítico
3.
J Exp Bot ; 74(12): 3651-3666, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-36987927

RESUMEN

LCIA (low CO2-inducible protein A) is a chloroplast envelope protein associated with the CO2-concentrating mechanism of the green alga Chlamydomonas reinhardtii. LCIA is postulated to be a HCO3- channel, but previous studies were unable to show that LCIA was actively transporting bicarbonate in planta. Therefore, LCIA activity was investigated more directly in two heterologous systems: an Escherichia coli mutant (DCAKO) lacking both native carbonic anhydrases and an Arabidopsis mutant (ßca5) missing the plastid carbonic anhydrase ßCA5. Neither DCAKO nor ßca5 can grow in ambient CO2 conditions, as they lack carbonic anhydrase-catalyzed production of the necessary HCO3- concentration for lipid and nucleic acid biosynthesis. Expression of LCIA restored growth in both systems in ambient CO2 conditions, which strongly suggests that LCIA is facilitating HCO3- uptake in each system. To our knowledge, this is the first direct evidence that LCIA moves HCO3- across membranes in bacteria and plants. Furthermore, the ßca5 plant bioassay used in this study is the first system for testing HCO3- transport activity in planta, an experimental breakthrough that will be valuable for future studies aimed at improving the photosynthetic efficiency of crop plants using components from algal CO2-concentrating mechanisms.


Asunto(s)
Anhidrasas Carbónicas , Chlamydomonas reinhardtii , Bicarbonatos/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Fotosíntesis , Plantas/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/metabolismo
4.
Photosynth Res ; 149(1-2): 171-185, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33534052

RESUMEN

Alternative electron fluxes such as the cyclic electron flux (CEF) around photosystem I (PSI) and Mehler reaction (Me) are essential for efficient photosynthesis because they generate additional ATP and protect both photosystems against photoinhibition. The capacity for Me can be estimated by measuring O2 exchange rate under varying irradiance and CO2 concentration. In this study, mass spectrometric measurements of O2 exchange were made using leaves of representative species of C3 and C4 grasses grown under natural light (control; PAR ~ 800 µmol quanta m-2 s-1) and shade (~ 300 µmol quanta m-2 s-1), and in representative species of gymnosperm, liverwort and fern grown under natural light. For all control grown plants measured at high CO2, O2 uptake rates were similar between the light and dark, and the ratio of Rubisco oxygenation to carboxylation (Vo/Vc) was low, which suggests little potential for Me, and that O2 uptake was mainly due to photorespiration or mitochondrial respiration under these conditions. Low CO2 stimulated O2 uptake in the light, Vo/Vc and Me in all species. The C3 species had similar Vo/Vc, but Me was highest in the grass and lowest in the fern. Among the C4 grasses, shade increased O2 uptake in the light, Vo/Vc and the assimilation quotient (AQ), particularly at low CO2, whilst Me was only substantial at low CO2 where it may contribute 20-50% of maximum electron flow under high light.


Asunto(s)
Adaptación Ocular/fisiología , Dióxido de Carbono/metabolismo , Transporte de Electrón/fisiología , Oxígeno/metabolismo , Fotosíntesis/fisiología , Luz Solar/efectos adversos , Productos Agrícolas/fisiología , Cycadopsida/fisiología , Ginkgo biloba/fisiología , Marchantia/fisiología , Hojas de la Planta/metabolismo , Poaceae/fisiología , Polypodium/fisiología , Zea mays/fisiología
5.
Plant Cell Physiol ; 60(10): 2206-2219, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31271439

RESUMEN

Photosynthetic induction, a gradual increase in photosynthetic rate on a transition from darkness or low light to high light, has ecological significance, impact on biomass accumulation in fluctuating light and relevance to photoprotection in strong light. However, the experimental quantification of the component electron fluxes in and around both photosystems during induction has been rare. Combining optimized chlorophyll fluorescence, the redox kinetics of P700 [primary electron donor in Photosystem I (PSI)] and membrane inlet mass spectrometry in the absence/presence of inhibitors/mediator, we partially estimated the components of electron fluxes in spinach leaf disks on transition from darkness to 1,000 �mol photons�m-2�s-1 for up to 10 min, obtaining the following findings: (i) the partitioning of energy between both photosystems did not change noticeably; (ii) in Photosystem II (PSII), the combined cyclic electron flow (CEF2) and charge recombination (CR2) to the ground state decreased gradually toward 0 in steady state; (iii) oxygen reduction by electrons from PSII, partly bypassing PSI, was small but measurable; (iv) cyclic electron flow around PSI (CEF1) peaked before becoming somewhat steady; (v) peak magnitudes of some of the electron fluxes, all probably photoprotective, were in the descending order: CEF1 > CEF2 + CR2 > chloroplast O2 uptake; and (vi) the chloroplast NADH dehydrogenase-like complex appeared to aid the antimycin A-sensitive CEF1. The results are important for fine-tuning in silico simulation of in vivo photosynthetic electron transport processes; such simulation is, in turn, necessary to probe partial processes in a complex network of interactions in response to environmental changes.


Asunto(s)
Transporte de Electrón , Oxígeno/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Spinacia oleracea/fisiología , Antimicina A/farmacología , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Oscuridad , Fluorescencia , Cinética , Luz , Oxidación-Reducción , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Spinacia oleracea/efectos de la radiación
6.
Photosynth Res ; 142(3): 321-334, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31520186

RESUMEN

Cyclic electron flow (CEF) around photosystem I (PSI) is essential for generating additional ATP and enhancing efficient photosynthesis. Accurate estimation of CEF requires knowledge of the fractions of absorbed light by PSI (fI) and PSII (fII), which are only known for a few model species such as spinach. No measures of fI are available for C4 grasses under different irradiances. We developed a new method to estimate (1) fII in vivo by concurrently measuring linear electron flux through both photosystems [Formula: see text] in leaf using membrane inlet mass spectrometry (MIMS) and total electron flux through PSII (ETR2) using chlorophyll fluorescence by a Dual-PAM at low light and (2) CEF as ETR1-[Formula: see text]. For a C3 grass, fI was 0.5 and 0.4 under control (high light) and shade conditions, respectively. C4 species belonging to NADP-ME and NAD-ME subtypes had fI of 0.6 and PCK subtype had 0.5 under control. All shade-grown C4 species had fI of 0.6 except for NADP-ME grass which had 0.7. It was also observed that fI ranged between 0.3 and 0.5 for gymnosperm, liverwort and fern species. CEF increased with irradiance and was induced at lower irradiances in C4 grasses and fern relative to other species. CEF was greater in shade-grown plants relative to control plants except for C4 NADP-ME species. Our study reveals a range of CEF and fI values in different plant functional groups. This variation must be taken into account for improved photosynthetic calculations and modelling.


Asunto(s)
Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/fisiología , Antimicina A/farmacología , Clorofila/química , Clorofila/metabolismo , Transporte de Electrón , Fluorescencia , Luz , Espectrometría de Masas/métodos , NAD/metabolismo , NADP/metabolismo , Panicum/fisiología , Fotosíntesis , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Poaceae/fisiología , Especificidad de la Especie , Zea mays/fisiología
7.
J Exp Bot ; 68(14): 3915-3924, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28637277

RESUMEN

To support photosynthetic CO2 fixation by Rubisco, the chloroplast must be fed with inorganic carbon in the form of CO2 or bicarbonate. However, the mechanisms allowing the rapid passage of this gas and this charged molecule through the bounding membranes of the chloroplast envelope are not yet completely elucidated. We describe here a method allowing us to measure the permeability of these two molecules through the chloroplast envelope using a membrane inlet mass spectrometer and 18O-labelled inorganic carbon. We established that the internal stromal carbonic anhydrase activity is not limiting for this technique, and precisely measured the chloroplast surface area and permeability values for CO2 and bicarbonate. This was performed on chloroplasts from several plant species, with values ranging from 2.3 × 10-4 m s-1 to 8 × 10-4 m s-1 permeability for CO2 and 1 × 10-8 m s-1 for bicarbonate. We were able to apply our method to chloroplasts from an Arabidopsis aquaporin mutant, and this showed that CO2 permeability was reduced 50% in the mutant compared with the wild-type reference.


Asunto(s)
Bicarbonatos/metabolismo , Dióxido de Carbono/metabolismo , Permeabilidad de la Membrana Celular , Cloroplastos/metabolismo , Espectrometría de Masas/métodos , Fotosíntesis
8.
Plant Physiol ; 165(1): 398-411, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24642960

RESUMEN

The carbon dioxide (CO2)-concentrating mechanism of cyanobacteria is characterized by the occurrence of Rubisco-containing microcompartments called carboxysomes within cells. The encapsulation of Rubisco allows for high-CO2 concentrations at the site of fixation, providing an advantage in low-CO2 environments. Cyanobacteria with Form-IA Rubisco contain α-carboxysomes, and cyanobacteria with Form-IB Rubisco contain ß-carboxysomes. The two carboxysome types have arisen through convergent evolution, and α-cyanobacteria and ß-cyanobacteria occupy different ecological niches. Here, we present, to our knowledge, the first direct comparison of the carboxysome function from α-cyanobacteria (Cyanobium spp. PCC7001) and ß-cyanobacteria (Synechococcus spp. PCC7942) with similar inorganic carbon (Ci; as CO2 and HCO3-) transporter systems. Despite evolutionary and structural differences between α-carboxysomes and ß-carboxysomes, we found that the two strains are remarkably similar in many physiological parameters, particularly the response of photosynthesis to light and external Ci and their modulation of internal ribulose-1,5-bisphosphate, phosphoglycerate, and Ci pools when grown under comparable conditions. In addition, the different Rubisco forms present in each carboxysome had almost identical kinetic parameters. The conclusions indicate that the possession of different carboxysome types does not significantly influence the physiological function of these species and that similar carboxysome function may be possessed by each carboxysome type. Interestingly, both carboxysome types showed a response to cytosolic Ci, which is of higher affinity than predicted by current models, being saturated by 5 to 15 mm Ci. This finding has bearing on the viability of transplanting functional carboxysomes into the C3 chloroplast.


Asunto(s)
Dióxido de Carbono/metabolismo , Cianobacterias/metabolismo , Orgánulos/metabolismo , Bicarbonatos/metabolismo , Carbono/farmacología , Cianobacterias/efectos de los fármacos , Cianobacterias/efectos de la radiación , Cianobacterias/ultraestructura , Ácidos Glicéricos/metabolismo , Cinética , Luz , Espectrometría de Masas , Orgánulos/efectos de los fármacos , Orgánulos/efectos de la radiación , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Ribulosa-Bifosfato Carboxilasa/metabolismo , Ribulosafosfatos/metabolismo , Synechococcus/efectos de los fármacos , Synechococcus/metabolismo , Synechococcus/efectos de la radiación , Synechococcus/ultraestructura
9.
Anal Chem ; 86(10): 5171-8, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24786640

RESUMEN

The reduction chemistry of molecular oxygen underpins the energy metabolism of multicellular organisms, liberating free energy needed to catalyze a plethora of enzymatic reactions. Measuring the isotope signatures of (16)O and (18)O during O2 reduction can provide insights into both kinetic and equilibrium isotope effects. However, current methods to measure O2 isotope signatures are time-consuming and disruptive. This paper describes the application of membrane inlet mass spectrometry to determine the oxygen isotope discrimination of a range of O2-consuming reactions, providing a rapid and convenient method for determining these values. A survey of oxygenase and oxidase reactions provides new insights into previously uncharacterized amino acid oxidase enzymes. Liquid and gas phase measurements show the ease of assays using this approach for purified enzymes, biological extracts and intact tissues.


Asunto(s)
Oxidorreductasas/química , Consumo de Oxígeno/fisiología , Isótopos de Oxígeno/química , Radioisótopos de Oxígeno/química , Espectrometría de Masas , Membranas Artificiales , Mitocondrias/química , Mitocondrias/enzimología , Sistemas en Línea , Oxigenasas/química
10.
Plant Physiol ; 161(1): 477-85, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23170037

RESUMEN

A moderate increase in seawater temperature causes coral bleaching, at least partially through photobleaching of the symbiotic algae Symbiodinium spp. Photobleaching of Symbiodinium spp. is primarily associated with the loss of light-harvesting proteins of photosystem II (PSII) and follows the inactivation of PSII under heat stress. Here, we examined the effect of increased growth temperature on the change in sensitivity of Symbiodinium spp. PSII inactivation and photobleaching under heat stress. When Symbiodinium spp. cells were grown at 25°C and 30°C, the thermal tolerance of PSII, measured by the thermal stability of the maximum quantum yield of PSII in darkness, was commonly enhanced in all six Symbiodinium spp. tested. In Symbiodinium sp. CCMP827, it took 6 h to acquire the maximum PSII thermal tolerance after transfer from 25°C to 30°C. The effect of increased growth temperature on the thermal tolerance of PSII was completely abolished by chloramphenicol, indicating that the acclimation mechanism of PSII is associated with the de novo synthesis of proteins. When CCMP827 cells were exposed to light at temperature ranging from 25°C to 35°C, the sensitivity of cells to both high temperature-induced photoinhibition and photobleaching was ameliorated by increased growth temperatures. These results demonstrate that thermal acclimation of Symbiodinium spp. helps to improve the thermal tolerance of PSII, resulting in reduced inactivation of PSII and algal photobleaching. These results suggest that whole-organism coral bleaching associated with algal photobleaching can be at least partially suppressed by the thermal acclimation of Symbiodinium spp. at higher growth temperatures.


Asunto(s)
Aclimatación , Dinoflagelados/metabolismo , Fotoblanqueo , Estrés Fisiológico , Simbiosis , Adaptación Fisiológica , Cloranfenicol/farmacología , Clorofila/metabolismo , Oscuridad , Dinoflagelados/efectos de los fármacos , Calor , Luz , Oxígeno/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Agua de Mar , Especificidad de la Especie , Factores de Tiempo
11.
Physiol Plant ; 152(3): 403-13, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24862879

RESUMEN

We sought a rapid, non-intrusive, whole-tissue measure of the functional photosystem II (PS II) content in leaves. Summation of electrons, delivered by a single-turnover flash to P700(+) (oxidized PS I primary donor) in continuous background far-red light, gave a parameter S in absorbance units after taking into account an experimentally determined basal electron flux that affects P700 redox kinetics. S was linearly correlated with the functional PS II content measured by the O(2) yield per single-turnover repetitive flash in Arabidopsis thaliana expressing an antisense construct to the PsbO (manganese-stabilizing protein in PS II) proteins of PS II (PsbO mutants). The ratio of S to z(max) (total PS I content in absorbance units) was comparable to the PS II/PS I reaction-center ratio in wild-type A. thaliana and in control Spinacea oleracea. Both S and S/z(max) decreased in photoinhibited spinach leaf discs. The whole-tissue functional PS II content and the PS II/photosystem I (PS I) ratio can be non-intrusively monitored by S and S/z(max), respectively, using a quick P700 absorbance protocol compatible with modern P700 instruments.


Asunto(s)
Arabidopsis/metabolismo , Clorofila/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Spinacia oleracea/metabolismo , Arabidopsis/efectos de la radiación , Transporte de Electrón , Cinética , Modelos Biológicos , Oxidación-Reducción , Oxígeno/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Spinacia oleracea/efectos de la radiación
12.
Sci Adv ; 10(19): eadk7283, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38728392

RESUMEN

Cyanobacterial CO2 concentrating mechanisms (CCMs) sequester a globally consequential proportion of carbon into the biosphere. Proteinaceous microcompartments, called carboxysomes, play a critical role in CCM function, housing two enzymes to enhance CO2 fixation: carbonic anhydrase (CA) and Rubisco. Despite its importance, our current understanding of the carboxysomal CAs found in α-cyanobacteria, CsoSCA, remains limited, particularly regarding the regulation of its activity. Here, we present a structural and biochemical study of CsoSCA from the cyanobacterium Cyanobium sp. PCC7001. Our results show that the Cyanobium CsoSCA is allosterically activated by the Rubisco substrate ribulose-1,5-bisphosphate and forms a hexameric trimer of dimers. Comprehensive phylogenetic and mutational analyses are consistent with this regulation appearing exclusively in cyanobacterial α-carboxysome CAs. These findings clarify the biologically relevant oligomeric state of α-carboxysomal CAs and advance our understanding of the regulation of photosynthesis in this globally dominant lineage.


Asunto(s)
Anhidrasas Carbónicas , Cianobacterias , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/metabolismo , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/genética , Anhidrasas Carbónicas/química , Cianobacterias/metabolismo , Cianobacterias/genética , Cianobacterias/enzimología , Regulación Alostérica , Filogenia , Ribulosafosfatos/metabolismo , Modelos Moleculares , Multimerización de Proteína , Dióxido de Carbono/metabolismo , Especificidad por Sustrato , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química
13.
Plant Cell Physiol ; 54(7): 1152-63, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23624674

RESUMEN

Oxygen plays an important role in photosynthesis by participating in a number of O2-consuming reactions. O2 inhibits CO2 fixation by stimulating photorespiration, thus reducing plant production. O2 interacts with photosynthetic electron transport in the chloroplasts' thylakoids in two main ways: by accepting electrons from PSI (Mehler reaction); and by accepting electrons from reduced plastoquinone (PQ) mediated by the plastid terminal oxidase (PTOX). In this study, we show, using 101 plant species, that there is a difference in the potential for photosynthetic electron flow to O2 between angiosperms and gymnosperms. We found, from measurements of Chl fluorescence and leaf absorbance at 830 nm, (i) that electron outflow from PSII, as determined by decay kinetics of Chl fluorescence after application of a saturating light pulse, is more rapid in gymnosperms than in angiosperms; (ii) that the reaction center Chl of PSI (P700) is rapidly and highly oxidized in gymnosperms during induction of photosynthesis; and (iii) that these differences are dependent on oxygen. Finally, rates of O2 uptake measured by mass spectrometry in the absence of photorespiration were significantly promoted by illumination in dark-adapted leaves of gymnosperms, but not in those of angiosperms. The light-stimulated O2 uptake was around 10% of the maximum O2 evolution in gymnosperms and 1% in angiosperms. These results suggest that gymnosperms have increased capacity for electron leakage to oxygen in photosynthesis compared with angiosperms. The involvement of the Mehler reaction and PTOX in the electron flow to O2 is discussed.


Asunto(s)
Cycadopsida/metabolismo , Cycadopsida/fisiología , Magnoliopsida/metabolismo , Oxígeno/metabolismo , Fotosíntesis , Dióxido de Carbono/metabolismo , Clorofila/química , Clorofila/metabolismo , Cycadopsida/clasificación , Transporte de Electrón , Fluorescencia , Cinética , Magnoliopsida/clasificación , Oxidación-Reducción , Oxidorreductasas/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Plastoquinona/metabolismo
14.
Plant Cell Environ ; 36(12): 2108-19, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23869820

RESUMEN

Biochemical models are used to predict and understand the response of photosynthesis to rising temperatures and CO2 partial pressures. These models require the temperature dependency of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) kinetics and mesophyll conductance to CO2 (g(m)). However, it is not known how the temperature response of Rubisco kinetics differs between species, and comprehensive in vivo Rubisco kinetics that include gm have only been determined in the warm-adapted Nicotiana tabacum. Here, we measured the temperature response of Rubisco kinetics and gm in N. tabacum and the cold-adapted Arabidopsis thaliana using gas exchange and (13)CO2 isotopic discrimination on plants with genetically reduced levels of Rubisco. While the individual Rubisco kinetic parameters in N. tabacum and A. thaliana were similar across temperatures, they collectively resulted in significantly different modelled rates of photosynthesis. Additionally, gm increased with temperature in N. tabacum but not in A. thaliana. These findings highlight the importance of considering species-dependent differences in Rubisco kinetics and gm when modelling the temperature response of photosynthesis.


Asunto(s)
Arabidopsis/enzimología , Células del Mesófilo/metabolismo , Nicotiana/enzimología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Temperatura , Dióxido de Carbono/metabolismo , Respiración de la Célula , Entropía , Técnicas de Silenciamiento del Gen , Cinética
15.
J Exp Bot ; 64(3): 753-68, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23028015

RESUMEN

Crop yields need to nearly double over the next 35 years to keep pace with projected population growth. Improving photosynthesis, via a range of genetic engineering strategies, has been identified as a promising target for crop improvement with regard to increased photosynthetic yield and better water-use efficiency (WUE). One approach is based on integrating components of the highly efficient CO(2)-concentrating mechanism (CCM) present in cyanobacteria (blue-green algae) into the chloroplasts of key C(3) crop plants, particularly wheat and rice. Four progressive phases towards engineering components of the cyanobacterial CCM into C(3) species can be envisaged. The first phase (1a), and simplest, is to consider the transplantation of cyanobacterial bicarbonate transporters to C(3) chloroplasts, by host genomic expression and chloroplast targeting, to raise CO(2) levels in the chloroplast and provide a significant improvement in photosynthetic performance. Mathematical modelling indicates that improvements in photosynthesis as high as 28% could be achieved by introducing both of the single-gene, cyanobacterial bicarbonate transporters, known as BicA and SbtA, into C(3) plant chloroplasts. Part of the first phase (1b) includes the more challenging integration of a functional cyanobacterial carboxysome into the chloroplast by chloroplast genome transformation. The later three phases would be progressively more elaborate, taking longer to engineer other functional components of the cyanobacterial CCM into the chloroplast, and targeting photosynthetic and WUE efficiencies typical of C(4) photosynthesis. These later stages would include the addition of NDH-1-type CO(2) pumps and suppression of carbonic anhydrase and C(3) Rubisco in the chloroplast stroma. We include a score card for assessing the success of physiological modifications gained in phase 1a.


Asunto(s)
Proteínas Bacterianas/genética , Dióxido de Carbono/metabolismo , Productos Agrícolas/metabolismo , Cianobacterias/metabolismo , Fotosíntesis , Proteínas Bacterianas/metabolismo , Cloroplastos/metabolismo , Productos Agrícolas/microbiología , Cianobacterias/genética , Ingeniería Metabólica
16.
Plant Cell ; 22(10): 3423-38, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20978221

RESUMEN

Here, we describe the snowy cotyledon3 (sco3-1) mutation, which impairs chloroplast and etioplast development in Arabidopsis thaliana seedlings. SCO3 is a member of a largely uncharacterized protein family unique to the plant kingdom. The sco3-1 mutation alters chloroplast morphology and development, reduces chlorophyll accumulation, impairs thylakoid formation and photosynthesis in seedlings, and results in photoinhibition under extreme CO(2) concentrations in mature leaves. There are no readily apparent changes to chloroplast biology, such as transcription or assembly that explain the disruption to chloroplast biogenesis. Indeed, SCO3 is actually targeted to another organelle, specifically to the periphery of peroxisomes. However, impaired chloroplast development cannot be attributed to perturbed peroxisomal metabolic processes involving germination, fatty acid ß-oxidation or photorespiration, though there are so far undescribed changes in low and high CO(2) sensitivity in seedlings and young true leaves. Many of the chloroplasts are bilobed, and some have persistent membranous extensions that encircle other cellular components. Significantly, there are changes to the cytoskeleton in sco3-1, and microtubule inhibitors have similar effects on chloroplast biogenesis as sco3-1 does. The localization of SCO3 to the periphery of the peroxisomes was shown to be dependent on a functional microtubule cytoskeleton. Therefore, the microtubule and peroxisome-associated SCO3 protein is required for chloroplast development, and sco3-1, along with microtubule inhibitors, demonstrates an unexpected role for the cytoskeleton and peroxisomes in chloroplast biogenesis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/fisiología , Citoesqueleto/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Mutagénesis Insercional , Peroxisomas/metabolismo , Filogenia , Hojas de la Planta/crecimiento & desarrollo , Plantones/crecimiento & desarrollo
17.
Plant Physiol ; 155(2): 956-62, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21177473

RESUMEN

In C(3) plants, CO(2) assimilation is limited by ribulose 1,5-bisphosphate (RuBP) regeneration rate at high CO(2). RuBP regeneration rate in turn is determined by either the chloroplast electron transport capacity to generate NADPH and ATP or the activity of Calvin cycle enzymes involved in regeneration of RuBP. Here, transgenic tobacco (Nicotiana tabacum 'W38') expressing an antisense gene directed at the transcript of either the Rieske iron-sulfur protein of the cytochrome (Cyt) b(6)/f complex or the δ-subunit of chloroplast ATP synthase have been used to investigate the effect of a reduction of these complexes on chloroplast electron transport rate (ETR). Reductions in δ-subunit of ATP synthase content did not alter chlorophyll, Cyt b(6)/f complex, or Rubisco content, but reduced ETR estimated either from measurements of chlorophyll fluorescence or CO(2) assimilation rates at high CO(2). Plants with low ATP synthase content exhibited higher nonphotochemical quenching and achieved higher ETR per ATP synthase than the wild type. The proportional increase in ETR per ATP synthase complex was greatest at 35°C, showing that the ATP synthase activity can vary in vivo. In comparison, there was no difference in the ETR per Cyt b(6)/f complex in plants with reduced Cyt b(6)/f content and the wild type. The ETR decreased more drastically with reductions in Cyt b(6)/f complex than ATP synthase content. This suggests that chloroplast ETR is more limited by Cyt b(6)/f than ATP synthase content and is a potential target for enhancing photosynthetic capacity in crops.


Asunto(s)
ATPasas de Translocación de Protón de Cloroplastos/metabolismo , Cloroplastos/enzimología , Complejo de Citocromo b6f/metabolismo , Nicotiana/enzimología , Fotosíntesis , Dióxido de Carbono/metabolismo , Clorofila/análisis , Transporte de Electrón , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/fisiología , Ribulosa-Bifosfato Carboxilasa/análisis , Nicotiana/fisiología
18.
J Exp Bot ; 63(13): 4781-95, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22922640

RESUMEN

Photosystem (PS) II is the multisubunit complex which uses light energy to split water, providing the reducing equivalents needed for photosynthesis. The complex is susceptible to damage from environmental stresses such as excess excitation energy and high temperature. This research investigated the in vivo photosynthetic consequences of impairments to PSII in Arabidopsis thaliana (ecotype Columbia) expressing an antisense construct to the PsbO proteins of PSII. Transgenic lines were obtained with between 25 and 60% of wild-type (WT) total PsbO protein content, with the PsbO1 isoform being more strongly reduced than PsbO2. These changes coincided with a decrease in functional PSII content. Low PsbO (less than 50% WT) plants grew more slowly and had lower chlorophyll content per leaf area. There was no change in content per unit area of cytochrome b6f, ATP synthase, or Rubisco, whereas PSI decreased in proportion to the reduction in chlorophyll content. The irradiance response of photosynthetic oxygen evolution showed that low PsbO plants had a reduced quantum yield, but matched the oxygen evolution rates of WT plants at saturating irradiance. It is suggested that these plants had a smaller pool of PSII centres, which are inefficiently connected to antenna pigments resulting in reduced photochemical efficiency.


Asunto(s)
Arabidopsis/genética , Oxígeno/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/fisiología , ARN sin Sentido/genética , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Arabidopsis/ultraestructura , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Luz , Fenotipo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Hojas de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN de Planta/genética
19.
Proc Natl Acad Sci U S A ; 106(9): 3237-42, 2009 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-19202067

RESUMEN

Coral bleaching caused by heat stress is accompanied by photoinhibition, which occurs under conditions where the rate of photodamage to photosystem II (PSII) exceeds the rate of its repair, in the symbiotic algae (Symbiodinium spp.) within corals. However, the mechanism of heat stress-induced photoinhibition in Symbiodinium still remains poorly understood. In the present work, we have investigated the effect of elevated temperature on the processes associated with the repair of photodamaged PSII in cultured Symbiodinium (OTcH-1 and CS-73). Severe photoinhibition was observed at temperature exceeding 32 degrees C in Symbiodinium CS-73 cells grown at 25-34 degrees C but not in cultures of the more thermally tolerant Symbiodinium OTcH-1. After photoinhibition treatment by strong light, photodamaged PSII was repaired close to initial levels under low light at 25 degrees C in both OTcH-1 and CS-73. However, the repair was strongly inhibited by increased temperature exceeding 31 degrees C in CS-73 but only weakly in OTcH-1. We found that inhibition of the repair process in CS-73 is attributed to impairment of both protein synthesis-dependent and -independent repair processes and is at least partially caused by suppression of the de novo synthesis of thylakoid membrane proteins and impairment of the generation of DeltapH across the thylakoid membrane, respectively. Our results suggest that acceleration of photoinhibition by moderate heat stress is attributed primarily to inhibition of the repair of photodamaged PSII and that the photoinhibition sensitivity of Symbiodinium to heat stress is determined by the thermal sensitivity of the PSII repair processes.


Asunto(s)
Acuicultura , Eucariontes/metabolismo , Eucariontes/efectos de la radiación , Fotosíntesis , Temperatura , Proteínas Algáceas/metabolismo , Oscuridad , Complejo de Proteína del Fotosistema II/metabolismo , Protones , Sensibilidad y Especificidad , Tilacoides/metabolismo
20.
Plant Physiol ; 153(1): 285-93, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20304968

RESUMEN

Carboxysomes are an essential part of the cyanobacterial CO2-concentrating mechanism, consisting of a protein shell and an interior of Rubisco. The beta-carboxysome shell protein CcmM forms two peptides via a proposed internal ribosomal entry site (IRES) within the ccmM transcript in Synechococcus PCC7942. The abundant short form (35 kD, M35) consists of Rubisco small subunit-like repeats and binds Rubisco. The lower abundance long form (58 kD, M58) also contains a gamma-carbonic anhydrase-like domain, which binds the carboxysomal carbonic anhydrase, CcaA. We examined whether these CcmM forms arise via an IRES or by other means. Mutations of a putative internal start codon (GTG) and Shine-Dalgarno sequence within ccmM, along with a gene coding for M35 alone, were examined in the high-CO2-requiring (HCR) carboxysomeless mutant, DeltaccmM. Expression of wild-type ccmM in DeltaccmM restored the wild-type phenotype, while mutation of putative start and Shine-Dalgarno sequences led to as much as 20-fold reduction in M35 content with no recovery from HCR phenotype. These cells also contained small electron-dense structures. Cells producing little or no M58, but sufficient M35, were found to contain large electron-dense structures, no CcaA, and had a HCR phenotype. Large subcellular aggregates can therefore form in the absence of M58, suggesting a role for M35 in internal carboxysome Rubisco packing. The results confirm that M35 is independently translated via an IRES within ccmM. Importantly, the data reveal that functional carboxysomes require both M35 and M58 in sufficient quantities and with a minimum stoichiometry of close to 1:1.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dióxido de Carbono/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Synechococcus/metabolismo , Codón Iniciador , Synechococcus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA