Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
2.
Immunity ; 47(1): 66-79.e5, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28723554

RESUMEN

Hypoxia augments inflammatory responses and osteoclastogenesis by incompletely understood mechanisms. We identified COMMD1 as a cell-intrinsic negative regulator of osteoclastogenesis that is suppressed by hypoxia. In human macrophages, COMMD1 restrained induction of NF-κB signaling and a transcription factor E2F1-dependent metabolic pathway by the cytokine RANKL. Downregulation of COMMD1 protein expression by hypoxia augmented RANKL-induced expression of inflammatory and E2F1 target genes and downstream osteoclastogenesis. E2F1 targets included glycolysis and metabolic genes including CKB that enabled cells to meet metabolic demands in challenging environments, as well as inflammatory cytokine-driven target genes. Expression quantitative trait locus analysis linked increased COMMD1 expression with decreased bone erosion in rheumatoid arthritis. Myeloid deletion of Commd1 resulted in increased osteoclastogenesis in arthritis and inflammatory osteolysis models. These results identify COMMD1 and an E2F-metabolic pathway as key regulators of osteoclastogenic responses under pathological inflammatory conditions and provide a mechanism by which hypoxia augments inflammation and bone destruction.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Artritis Reumatoide/inmunología , Macrófagos/inmunología , Osteogénesis/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Factor de Transcripción E2F1/metabolismo , Femenino , Humanos , Hipoxia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , FN-kappa B/metabolismo , ARN Interferente Pequeño/genética , Transducción de Señal
3.
J Immunol ; 196(11): 4452-4456, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27183582

RESUMEN

Osteoclasts are resorptive cells that are important for homeostatic bone remodeling and pathological bone resorption. Emerging evidence suggests an important role for epigenetic mechanisms in osteoclastogenesis. A recent study showed that epigenetic silencing of the negative regulator of osteoclastogenesis Irf8 by DNA methylation is required for osteoclast differentiation. In this study, we investigated the role of EZH2, which epigenetically silences gene expression by histone methylation, in osteoclastogenesis. Inhibition of EZH2 by the small molecule GSK126, or decreasing its expression using antisense oligonucleotides, impeded osteoclast differentiation. Mechanistically, EZH2 was recruited to the IRF8 promoter after RANKL stimulation to deposit the negative histone mark H3K27me3 and downregulate IRF8 expression. GSK126 attenuated bone loss in the ovariectomy mouse model of postmenopausal osteoporosis. Our findings provide evidence for an additional mechanism of epigenetic IRF8 silencing during osteoclastogenesis that likely works cooperatively with DNA methylation, further emphasizing the importance of IRF8 as a negative regulator of osteoclastogenesis.


Asunto(s)
Diferenciación Celular/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Silenciador del Gen , Factores Reguladores del Interferón/genética , Osteoclastos/citología , Osteoclastos/metabolismo , Osteogénesis/genética , Animales , Humanos , Factores Reguladores del Interferón/biosíntesis , Ratones , Ratones Endogámicos C3H
4.
Proc Natl Acad Sci U S A ; 111(17): 6371-6, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24733886

RESUMEN

Adoptive cell transfer of ex vivo-generated immune-promoting or tolerogenic T cells to either enhance immunity or promote tolerance in patients has been used with some success. However, effective trafficking of the transferred cells to the target tissue sites is the main barrier to achieving successful clinical outcomes. Here we developed a strategy for optically controlling T-cell trafficking using a photoactivatable (PA) chemokine receptor. Photoactivatable-chemokine C-X-C motif receptor 4 (PA-CXCR4) transmitted intracellular CXCR4 signals in response to 505-nm light. Localized activation of PA-CXCR4 induced T-cell polarization and directional migration (phototaxis) both in vitro and in vivo. Directing light onto the melanoma was sufficient to recruit PA-CXCR4-expressing tumor-targeting cytotoxic T cells and improved the efficacy of adoptive T-cell transfer immunotherapy, with a significant reduction in tumor growth in mice. These findings suggest that the use of photoactivatable chemokine receptors allows remotely controlled leukocyte trafficking with outstanding spatial resolution in tissues and may be feasible in other cell transfer therapies.


Asunto(s)
Movimiento Celular , Optogenética , Receptores CXCR4/metabolismo , Linfocitos T/citología , Secuencia de Aminoácidos , Animales , Adhesión Celular/efectos de la radiación , Movimiento Celular/efectos de la radiación , Polaridad Celular/inmunología , Polaridad Celular/efectos de la radiación , Inmunoterapia , Luz , Ratones , Datos de Secuencia Molecular , Neoplasias/inmunología , Neoplasias/terapia , Ingeniería de Proteínas , Receptores CXCR4/química , Transducción de Señal/efectos de la radiación , Linfocitos T/inmunología
5.
J Cell Physiol ; 231(2): 449-458, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26189496

RESUMEN

Investigations on the therapeutic effects of intravenous immunoglobulin (IVIG) have focused on the suppression of autoantibody and immune complex-mediated inflammatory pathogenesis. Inflammatory diseases such as rheumatoid arthritis are often accompanied by excessive bone erosion but the effect of IVIG on osteoclasts, bone-resorbing cells, has not been studied. Here, we investigate whether IVIG directly regulates osteoclast differentiation and has therapeutic potential for suppressing osteoclast-mediated pathologic bone resorption. IVIG or cross-linking of Fcγ receptors with plate-bound IgG suppressed receptor activator of nuclear factor-κ B ligand (RANKL)-induced osteoclastogenesis and expression of osteoclast-related genes such as integrin ß3 and cathepsin K in a dose-dependent manner. Mechanistically, IVIG or plate-bound IgG suppressed osteoclastogenesis by downregulating RANKL-induced expression of NFATC1, the master regulator of osteoclastogenesis. IVIG suppressed NFATC1 expression by attenuating RANKL-induced NF-κB signaling, explained in part by induction of the inflammatory signaling inhibitor A20. IVIG administration attenuated in vivo osteoclastogenesis and suppressed bone resorption in the tumor necrosis factor (TNF)-induced calvarial osteolysis model. Our findings show that, in addition to suppressing inflammation, IVIG directly inhibits osteoclastogenesis through a mechanism involving suppression of RANK signaling. Direct suppression of osteoclast differentiation may provide beneficial effects on preserving bone mass when IVIG is used to treat rheumatic disorders.


Asunto(s)
Resorción Ósea/terapia , Cisteína Endopeptidasas/biosíntesis , Inmunoglobulinas Intravenosas/uso terapéutico , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Animales , Resorción Ósea/metabolismo , Resorción Ósea/patología , Diferenciación Celular , Modelos Animales de Enfermedad , Femenino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Factores de Transcripción NFATC/genética , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Osteoclastos/patología , Ligando RANK/metabolismo , Enfermedades Reumáticas/metabolismo , Enfermedades Reumáticas/patología , Enfermedades Reumáticas/terapia , Transducción de Señal , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Factor de Necrosis Tumoral alfa/fisiología
6.
J Immunol ; 189(1): 365-72, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-22623332

RESUMEN

α-Enolase (ENO1) is a multifunctional glycolytic enzyme expressed abundantly in the cytosol. It has been implicated in autoimmune and inflammatory diseases. Serum Abs against ENO1 were reported in rheumatoid arthritis (RA). Cell-surface expression of ENO1 has been found to be increased rapidly in response to inflammatory stimuli, but its expression and function has not been reported in RA. In this study, we show that cell-surface expression of ENO1 is increased on monocytes and macrophages isolated from RA patients but not on those from osteoarthritis patients, and Ab against ENO1 can stimulate these cells to produce higher amounts of proinflammatory mediators, such as TNF-α, IL-1 α/ß, IFN-γ, and PGE(2) via p38 MAPK and NF-κB pathway. The frequency of ENO1-positive cells in synovial fluid mononuclear cells was higher than PBMCs. ENO1-positive cells were also found in the inflamed synovium from RA patients and arthritic ankle tissues of mice with collagen-induced arthritis. Taken together, these findings suggest that Abs against ENO1 present in RA sera may stimulate monocytes and macrophages expressing cell-surface ENO1 and contribute to production of proinflammatory mediators during the effector phase of synovial inflammation.


Asunto(s)
Artritis Reumatoide/enzimología , Biomarcadores de Tumor/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Macrófagos/enzimología , Monocitos/enzimología , Fosfopiruvato Hidratasa/biosíntesis , Membrana Sinovial/enzimología , Proteínas Supresoras de Tumor/biosíntesis , Secuencia de Aminoácidos , Animales , Artritis Experimental/enzimología , Artritis Experimental/inmunología , Artritis Experimental/patología , Artritis Reumatoide/inmunología , Artritis Reumatoide/patología , Biomarcadores de Tumor/fisiología , Células Cultivadas , Colágeno/administración & dosificación , Proteínas de Unión al ADN/fisiología , Humanos , Inflamación/enzimología , Inflamación/inmunología , Inflamación/patología , Macrófagos/inmunología , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos DBA , Datos de Secuencia Molecular , Monocitos/inmunología , Monocitos/patología , Fosfopiruvato Hidratasa/fisiología , Membrana Sinovial/inmunología , Membrana Sinovial/patología , Proteínas Supresoras de Tumor/fisiología
7.
Cell Mol Immunol ; 20(1): 94-109, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36513810

RESUMEN

Monocyte/macrophage lineage cells are highly plastic and can differentiate into various cells under different environmental stimuli. Bone-resorbing osteoclasts are derived from the monocyte/macrophage lineage in response to receptor activator of NF-κB ligand (RANKL). However, the epigenetic signature contributing to the fate commitment of monocyte/macrophage lineage differentiation into human osteoclasts is largely unknown. In this study, we identified RANKL-responsive human osteoclast-specific superenhancers (SEs) and SE-associated enhancer RNAs (SE-eRNAs) by integrating data obtained from ChIP-seq, ATAC-seq, nuclear RNA-seq and PRO-seq analyses. RANKL induced the formation of 200 SEs, which are large clusters of enhancers, while suppressing 148 SEs in macrophages. RANKL-responsive SEs were strongly correlated with genes in the osteoclastogenic program and were selectively increased in human osteoclasts but marginally presented in osteoblasts, CD4+ T cells, and CD34+ cells. In addition to the major transcription factors identified in osteoclasts, we found that BATF binding motifs were highly enriched in RANKL-responsive SEs. The depletion of BATF1/3 inhibited RANKL-induced osteoclast differentiation. Furthermore, we found increased chromatin accessibility in SE regions, where RNA polymerase II was significantly recruited to induce the extragenic transcription of SE-eRNAs, in human osteoclasts. Knocking down SE-eRNAs in the vicinity of the NFATc1 gene diminished the expression of NFATc1, a major regulator of osteoclasts, and osteoclast differentiation. Inhibiting BET proteins suppressed the formation of some RANKL-responsive SEs and NFATc1-associated SEs, and the expression of SE-eRNA:NFATc1. Moreover, SE-eRNA:NFATc1 was highly expressed in the synovial macrophages of rheumatoid arthritis patients exhibiting high-osteoclastogenic potential. Our genome-wide analysis revealed RANKL-inducible SEs and SE-eRNAs as osteoclast-specific signatures, which may contribute to the development of osteoclast-specific therapeutic interventions.


Asunto(s)
Células de la Médula Ósea , Osteoclastos , Ligando RANK , Humanos , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Epigénesis Genética , Macrófagos/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Osteoclastos/metabolismo , Ligando RANK/genética , Ligando RANK/metabolismo
8.
Eur J Cell Biol ; 101(3): 151248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35688054

RESUMEN

Osteoclasts are bone resorbing cells that are responsible for physiological and pathological bone resorption. Macrophage colony stimulating factor (M-CSF) binds to the M-CSF receptor (c-FMS) and plays a key role in the differentiation and survival of macrophages and osteoclasts. THOC5, a member of the THO complex, has been shown to regulate hematopoiesis and M-CSF-induced macrophage differentiation. However, the role of THOC5 in osteoclasts remains unclear. Here, our study reveals a new role of THOC5 in osteoclast formation. We found that THOC5 shuttles between nucleus and cytoplasm in an M-CSF signaling dependent manner. THOC5 bound to FICD, a proteolytic cleavage product of c-FMS, and THOC5 facilitates the nuclear translocations of FICD. Decreased expression of THOC5 by siRNA-mediated knock down suppressed osteoclast differentiation, in part, by regulating RANK, a key receptor of osteoclasts. Mechanistically, knock down of THOC5 inhibited the expression of RANKL-induced FOS and NFATc1. Our findings highlight THOC5's function as a positive regulator of osteoclasts.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos , Proteínas Nucleares , Osteoclastos , Osteogénesis , Resorción Ósea , Diferenciación Celular , Humanos , Factor Estimulante de Colonias de Macrófagos/metabolismo , Factor Estimulante de Colonias de Macrófagos/farmacología , Proteínas Nucleares/metabolismo , Osteoclastos/metabolismo
9.
Front Cell Dev Biol ; 10: 920683, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060812

RESUMEN

Osteoclasts are bone-resorbing cells that undergo extensive changes in morphology throughout their differentiation. Altered osteoclast differentiation and activity lead to changes in pathological bone resorption. The mammalian target of rapamycin (mTOR) is a kinase, and aberrant mTOR complex 1 (mTORC1) signaling is associated with altered bone homeostasis. The activation of mTORC1 is biphasically regulated during osteoclastogenesis; however, the mechanism behind mTORC1-mediated regulation of osteoclastogenesis and bone resorption is incompletely understood. Here, we found that MYC coordinates the dynamic regulation of mTORC1 activation during osteoclastogenesis. MYC-deficiency blocked the early activation of mTORC1 and also reversed the decreased activity of mTORC1 at the late stage of osteoclastogenesis. The suppression of mTORC1 activity by rapamycin in mature osteoclasts enhances bone resorption activity despite the indispensable role of high mTORC1 activation in osteoclast formation in both mouse and human cells. Mechanistically, MYC induces Growth arrest and DNA damage-inducible protein (GADD34) expression and suppresses mTORC1 activity at the late phase of osteoclastogenesis. Taken together, our findings identify a MYC-GADD34 axis as an upstream regulator of dynamic mTORC1 activation in osteoclastogenesis and highlight the interplay between MYC and mTORC1 pathways in determining osteoclast activity.

10.
J Cell Biochem ; 112(3): 894-901, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21328462

RESUMEN

It is known that vitamin C induces apoptosis in several kinds of tumor cells, but its effect on the regulation of the angiogenic process of tumors is not completely studied. Vascular endothelial growth factor (VEGF) is the most well-known angiogenic factor, and it has a potent function as a stimulator of endothelial survival, migration, as well as vascular permeability. Therefore, we have investigated whether vitamin C can regulate the angiogenic process through the modulation of VEGF production from B16F10 melanoma cells. VEGF mRNA expression and VEGF production at protein levels were suppressed by vitamin C. In addition, we found that vitamin C suppressed the expression of cyclooxygenase (COX)-2 and that decreased VEGF production by vitamin C was also restored by the administration of prostaglandin E2 which is a product of COX-2. These results suggest that vitamin C suppresses VEGF expression via the regulation of COX-2 expression. Mitogen-activated protein kinases are generally known as key mediators in the signaling pathway for VEGF production. In the presence of vitamin C, the activation of p42/44 MAPK was completely inhibited. Taken together, our data suggest that vitamin C can down-regulate VEGF production via the modulation of COX-2 expression and that p42/44 MAPK acts as an important signaling mediator in this process.


Asunto(s)
Ácido Ascórbico/farmacología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Animales , Línea Celular Tumoral , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Dinoprostona/farmacología , Regulación hacia Abajo , Activación Enzimática/efectos de los fármacos , Melanoma Experimental , Ratones , Nitrobencenos/farmacología , Fosforilación , Sulfonamidas/farmacología
11.
Bone Res ; 9(1): 4, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33424022

RESUMEN

Osteoporosis is a metabolic bone disease with dysregulated coupling between bone resorption and bone formation, which results in decreased bone mineral density. The MEF2C locus, which encodes the transcription factor MADS box transcription enhancer factor 2, polypeptide C (MEF2C), is strongly associated with adult osteoporosis and osteoporotic fractures. Although the role of MEF2C in bone and cartilage formation by osteoblasts, osteocytes, and chondrocytes has been studied, the role of MEF2C in osteoclasts, which mediate bone resorption, remains unclear. In this study, we identified MEF2C as a positive regulator of human and mouse osteoclast differentiation. While decreased MEF2C expression resulted in diminished osteoclastogenesis, ectopic expression of MEF2C enhanced osteoclast generation. Using transcriptomic and bioinformatic approaches, we found that MEF2C promotes the RANKL-mediated induction of the transcription factors c-FOS and NFATc1, which play a key role in osteoclastogenesis. Mechanistically, MEF2C binds to FOS regulatory regions to induce c-FOS expression, leading to the activation of NFATC1 and downstream osteoclastogenesis. Inducible deletion of Mef2c in mice resulted in increased bone mass under physiological conditions and protected mice from bone erosion by diminishing osteoclast formation in K/BxN serum induced arthritis, a murine model of inflammatory arthritis. Our findings reveal direct regulation of osteoclasts by MEF2C, thus adding osteoclasts as a cell type in which altered MEF2C expression or function can contribute to pathological bone remodeling.

12.
Bone Res ; 9(1): 45, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34671034

RESUMEN

Osteoclasts are bone-resorbing cells that play an essential role in homeostatic bone remodeling and pathological bone erosion. Macrophage colony stimulating factor (M-CSF) is abundant in rheumatoid arthritis (RA). However, the role of M-CSF in arthritic bone erosion is not completely understood. Here, we show that M-CSF can promote osteoclastogenesis by triggering the proteolysis of c-FMS, a receptor for M-CSF, leading to the generation of FMS intracellular domain (FICD) fragments. Increased levels of FICD fragments positively regulated osteoclastogenesis but had no effect on inflammatory responses. Moreover, myeloid cell-specific FICD expression in mice resulted in significantly increased osteoclast-mediated bone resorption in an inflammatory arthritis model. The FICD formed a complex with DAP5, and the FICD/DAP5 axis promoted osteoclast differentiation by activating the MNK1/2/EIF4E pathway and enhancing NFATc1 protein expression. Moreover, targeting the MNK1/2 pathway diminished arthritic bone erosion. These results identified a novel role of c-FMS proteolysis in osteoclastogenesis and the pathogenesis of arthritic bone erosion.

13.
Cell Rep ; 35(11): 109264, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34133930

RESUMEN

MYC activates different metabolic programs in a cell-type- and cell-status-dependent manner. However, the role of MYC in inflammatory macrophages has not yet been determined. Metabolic and molecular analyses reveal that MYC, but not hypoxia inducible factor 1 (HIF1), is involved in enhancing early glycolytic flux during inflammatory macrophage polarization. Ablation of MYC decreases lactate production by regulating lactate dehydrogenase (LDH) activity and causes increased inflammatory cytokines by regulating interferon regulatory factor 4 (IRF4) in response to lipopolysaccharide. Moreover, myeloid-specific deletion of MYC and pharmacological inhibition of the MYC/LDH axis enhance inflammation and the bacterial clearance in vivo. These results elucidate the potential role of the MYC/LDH/IRF4 axis in inflammatory macrophages by connecting early glycolysis with inflammatory responses and suggest that modulating early glycolytic flux mediated by the MYC/LDH axis can be used to open avenues for the therapeutic modulation of macrophage polarization to fight against bacterial infection.


Asunto(s)
Glucólisis , Inflamación/metabolismo , Inflamación/patología , Factores Reguladores del Interferón/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Bacterias/metabolismo , Citocinas/biosíntesis , Femenino , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inmunidad Innata , Mediadores de Inflamación/metabolismo , Ácido Láctico/metabolismo , Lipopolisacáridos , Masculino , Ratones Noqueados , Proteínas Proto-Oncogénicas c-myc/deficiencia
14.
J Bone Miner Res ; 36(6): 1104-1116, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33567098

RESUMEN

Sexual dimorphism of the skeleton is well documented. At maturity, the male skeleton is typically larger and has a higher bone density than the female skeleton. However, the underlying mechanisms for these differences are not completely understood. In this study, we examined sexual dimorphism in the formation of osteoclasts between cells from female and male mice. We found that the number of osteoclasts in bones was greater in females. Similarly, in vitro osteoclast differentiation was accelerated in female osteoclast precursor (OCP) cells. To further characterize sex differences between female and male osteoclasts, we performed gene expression profiling of cultured, highly purified, murine bone marrow OCPs that had been treated for 3 days with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). We found that 125 genes were differentially regulated in a sex-dependent manner. In addition to genes that are contained on sex chromosomes, transcriptional sexual dimorphism was found to be mediated by genes involved in innate immune and inflammatory response pathways. Furthermore, the NF-κB-NFATc1 axis was activated earlier in female differentiating OCPs, which partially explains the differences in transcriptomic sexual dimorphism in these cells. Collectively, these findings identify multigenic sex-dependent intrinsic difference in differentiating OCPs, which results from an altered response to osteoclastogenic stimulation. In humans, these differences could contribute to the lower peak bone mass and increased risk of osteoporosis that females demonstrate relative to males. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Osteoclastos , Caracteres Sexuales , Animales , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Femenino , Factor Estimulante de Colonias de Macrófagos , Masculino , Ratones , Factores de Transcripción NFATC , Osteogénesis , Ligando RANK
15.
Curr Opin Pharmacol ; 53: 8-17, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32569976

RESUMEN

Osteoclasts are bone-resorbing cells that play an essential role in the remodeling of bone under physiological conditions and numerous pathological conditions, such as osteoporosis, bone metastasis, and inflammatory bone erosion. Nuclear receptors are crucial to various physiological processes, including metabolism, development and inflammation, and function as transcription factors to activate target genes. Synthetic ligands of nuclear receptors are also available for the treatment of metabolic and inflammatory diseases. However, dysregulated bone phenotypes have been documented in patients who take synthetic nuclear receptor ligands as a therapy. Therefore, the effect of nuclear receptors on bone cells has become an important area of exploration; additionally, the molecular mechanisms underlying the action of nuclear receptors in osteoclasts have not been completely understood. Here, we cover the recent progress in our understanding of the roles of nuclear receptors in osteoclasts.


Asunto(s)
Osteoclastos/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Humanos
16.
Cells ; 9(9)2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32967239

RESUMEN

Osteoclasts are the sole bone-resorbing cells that play an essential role in homeostatic bone remodeling and pathogenic bone destruction such as inflammatory arthritis. Pharmacologically targeting osteoclasts has been a promising approach to alleviating bone disease, but there remains room for improvement in mitigating drug side effects and enhancing cell specificity. Recently, we demonstrated the crucial role of MYC and its downstream effectors in driving osteoclast differentiation. Despite these advances, upstream regulators of MYC have not been well defined. In this study, we identify nuclear factor erythroid 2-related factor 2 (NRF2), a transcription factor known to regulate the expression of phase II antioxidant enzymes, as a novel upstream regulator of MYC. NRF2 negatively regulates receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis through the ERK and p38 signaling-mediated suppression of MYC transcription. Furthermore, the ablation of MYC in osteoclasts reverses the enhanced osteoclast differentiation and activity in NRF2 deficiency in vivo and in vitro in addition to protecting NRF2-deficient mice from pathological bone loss in a murine model of inflammatory arthritis. Our findings indicate that this novel NRF2-MYC axis could be instrumental for the fine-tuning of osteoclast formation and provides additional ways in which osteoclasts could be therapeutically targeted to prevent pathological bone erosion.


Asunto(s)
Artritis Experimental/genética , Huesos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Osteoclastos/metabolismo , Osteogénesis/genética , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Artritis Experimental/metabolismo , Artritis Experimental/patología , Huesos/efectos de los fármacos , Huesos/patología , Diferenciación Celular/efectos de los fármacos , Regulación de la Expresión Génica , Imidazoles/farmacología , Masculino , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/agonistas , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Osteoclastos/citología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ligando RANK/genética , Ligando RANK/metabolismo , Células RAW 264.7 , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
17.
Carcinogenesis ; 30(12): 1987-96, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19638429

RESUMEN

Cancer cells metastasize to the other site after escaping from the immune system and CD70, CD44 and vascular endothelial growth factor (VEGF) play important roles in this process. It is recently reported that interleukin (IL)-18 is closely related with the pathogenesis of skin tumor. Therefore, we investigated the role of endogenous IL-18 from stomach cancer on the immune escape mechanism and metastasis via the regulation of CD70, CD44 and VEGF expression. IL-18 and IL-18R expressions were not only investigated on tumor tissues (n = 10), and sera (n = 20) from stomach cancer patients, but also on human stomach cancer cell lines. IL-18 and IL-18R expressions were found on stomach cancer cell lines and tumor tissues. In addition, IL-18 levels were elevated in sera from cancer patients (P < 0.05), compared with sera from normal individuals. Changes in CD70, CD44 and VEGF expression by flow cytometry, immunoblotting and enzyme-linked immunosorbent assay and immune susceptibility by (51)Cr-release assay were investigated, after silencing or neutralization of endogenous IL-18. CD70 expression was increased and it increases immune susceptibility of cancer cells. In contrast, CD44 and VEGF expression was decreased and it suppresses neovascularization and the metastasis of stomach cancer. After inoculation of IL-18 small interfering RNA (siRNA)-transfected stomach cancer cells into Balb/C (nu/nu) mice, regression of tumor mass was determined by measuring of tumor size. And the number and location of metastatic lesions were investigated by hematoxylin and eosin staining. The regression of tumor mass and the suppression of metastasis were observed in the mice, which are injected with IL-18 siRNA-transfected cell lines. Our data suggest that endogenous IL-18 might facilitate stomach cancer cell immune escape by suppressing CD70 and increasing metastatic ability by upregulating CD44 and VEGF.


Asunto(s)
Ligando CD27/biosíntesis , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Receptores de Hialuranos/biosíntesis , Interleucina-18/fisiología , Neoplasias Gástricas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular Tumoral , Femenino , Humanos , Sistema Inmunológico , Interleucina-18/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , ARN Interferente Pequeño/metabolismo
18.
Nat Commun ; 10(1): 3320, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31346169

RESUMEN

Activation of macrophage proinflammatory and antimicrobial phenotypes is regulated by IFN-γ and LPS via synergistic induction of canonical, inflammatory NF-κB target genes. However, whether IFN-γ negatively regulates components of the LPS response, and how this may affect macrophage activation, is still unclear. Here we use combined transcriptomic and epigenomic approaches to find that IFN-γ selectively abrogates LPS-induced feedback and alters macrophage metabolic pathways by suppressing TLR4-mediated gene activation. In contrast to superinduction of inflammatory genes via enhancers that bind IRF1 and STAT1, IFN-γ represses target enhancers that bind STAT3. TLR4-activated but IFN-γ-suppressed enhancers comprise two subsets discernable by differential regulation of histone acetylation and recruitment of STAT3, CDK8 and cohesin. Our findings thus show that IFN-γ suppresses feedback inhibitory and metabolic components of TLR responses to enhance macrophage activation; they also provide insights for IFN-γ-mediated selective inhibition of TLR4-induced transcription. Such inhibition can contribute to severe and sustained inflammatory responses.


Asunto(s)
Interferón gamma/inmunología , Macrófagos/inmunología , Receptor Toll-Like 4/inmunología , Regulación de la Expresión Génica , Humanos , Lipopolisacáridos/inmunología , Activación de Macrófagos , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/inmunología , Receptor Toll-Like 4/genética
19.
J Cell Physiol ; 216(1): 180-8, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18297687

RESUMEN

Vitamin C plays a crucial role in the suppression of proliferation of several types of cancer. Over-expression of cyclooxygenase (COX)-2 and type I insulin-like growth factor (IGF) receptor are important for proliferation and protection from apoptosis in malignancies. However, its specific mechanisms, especially the interaction between COX-2 expression and IGF-I axis mediated by vitamin C, remain yet to be clarified. Therefore, we investigated the effects of vitamin C on the proliferation of melanoma cells via the modulation of COX-2 expression and IGF-I axis. As a result, we found that 1.0 mM vitamin C inhibits the proliferation of SK-MEL-2 without induction of apoptosis. At that moment, IGF-II production was decreased, followed by the inhibition of COX-2 activity. IGF-IR expression was also down-regulated by vitamin C treatment. It coincided with the result from the inhibition of COX-2 by NS-398 and COX-2 siRNA. In addition, the decreased IGF-IR expression by vitamin C was restored by the treatment of recombinant prostaglandin E2. Finally, we determined whether the signal pathway would be involved in vitamin C-induced IGF-II and IGF-IR down-regulation. When the cells were exposed to SB203580, a specific inhibitor of p38 MAPK, COX-2 expression was dramatically recovered. In addition, phosphorylated p38 MAPK was increased after vitamin C treatment. Taken together, vitamin C suppresses proliferation of the human melanoma cell line SK-MEL2 via the down-regulation of IGF-II production and IGF-IR expression, which is followed by the activation of p38 MAPK and the inhibition of COX-2 expression.


Asunto(s)
Ácido Ascórbico/metabolismo , Proliferación Celular , Ciclooxigenasa 2/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Melanoma , Animales , Línea Celular Tumoral , Ciclooxigenasa 2/genética , Activación Enzimática , Inhibidores Enzimáticos/metabolismo , Humanos , Imidazoles/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Melanoma/metabolismo , Melanoma/patología , Piridinas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Vitaminas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Oncol Lett ; 14(1): 276-282, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28693165

RESUMEN

Despite documentation of successful therapy with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in patients with lung cancer, the response rate of patients treated with this therapy remains low. The present study investigated whether L-ascorbic acid serves an adjuvant role in vitro when combined with the EGFR tyrosine kinase inhibitor gefitinib (Iressa®) in lung cancer cell lines. A total of three human lung cancer cell lines were used. The antiproliferative effects and changes in the cell cycle and expression of intracellular signaling molecules, including extracellular signal-regulated kinases (Erk), signal transducer and activator of transcription 3 (Stat3) and protein kinase B (Akt), were measured in cells treated with gefitinib and/or L-ascorbic acid at various concentrations. When combined with gefitinib, L-ascorbic acid exhibited an additive effect on cell proliferation in all gefitinib-sensitive and gefitinib-resistant cell lines. A decrement of ~40% was observed with a low dose 0.5 mM L-ascorbic acid and gefitinib in the relatively gefitinib-resistant A549 cell line (85.6±5.4% with gefitinib alone vs. 52.7±7.3% with combination therapy; P=0.046). The downregulation of intracellular signaling cascades, including EGFR, Akt, Erk and Stat3, was also observed. L-Ascorbic acid serves an adjuvant role when administered in combination with gefitinib; however, the degree of inhibition of cell proliferation differs between lung cancer cell lines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA