Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38999072

RESUMEN

The ongoing development of bacterial resistance to antibiotics is a global challenge. Research in that field is thus necessary. Analytical techniques are required for such a purpose. From this perspective, the focus was on atomic absorption spectrometry (AAS). Although it is old, AAS often offers unexpected potential. Of course, this should be exploited. The aim was therefore to demonstrate the versatility of the technique in antibacterial research. This is illustrated by various examples of its practical application. AAS can be used, for example, to confirm the identity of antibacterial compounds, for purity controls, or to quantify the antibiotics in pharmaceutical preparations. The latter allowed analysis without laborious sample preparation and without interference from other excipients. In addition, AAS can help elucidate the mode of action or resistance mechanisms. In this context, quantifying the accumulation of the antibiotic drug in the cell of (resistant) bacteria appears to play an important role. The general application of AAS is not limited to metal-containing drugs, but also enables the determination of some organic chemical antibiotics. Altogether, this perspective presents a range of applications for AAS in antibacterial research, intending to raise awareness of the method and may thus contribute to the fight against resistance.


Asunto(s)
Antibacterianos , Espectrofotometría Atómica , Antibacterianos/farmacología , Antibacterianos/química , Bacterias/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Espectrofotometría Atómica/métodos
2.
Molecules ; 29(1)2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38202692

RESUMEN

The Chinese yam (Dioscorea polystachya, DP) is known for the nutritional value of its tuber. Nevertheless, DP also has promising pharmacological properties. Compared with the tuber, the leaves of DP are still very little studied. However, it may be possible to draw conclusions about the plant quality based on the coloration of the leaves. Magnesium, as a component of chlorophyll, seems to play a role. Therefore, the aim of this research work was to develop an atomic absorption spectrometry-based method for the analysis of magnesium (285.2125 nm) in leaf extracts of DP following the graphite furnace sub-technique. The optimization of the pyrolysis and atomization temperatures resulted in 1500 °C and 1800 °C, respectively. The general presence of flavonoids in the extracts was detected and could explain the high pyrolysis temperature due to the potential complexation of magnesium. The elaborated method had linearity in a range of 1-10 µg L-1 (R2 = 0.9975). The limits of detection and quantification amounted to 0.23 µg L-1 and 2.00 µg L-1, respectively. The characteristic mass was 0.027 pg, and the recovery was 96.7-102.0%. Finally, the method was applied to extracts prepared from differently colored leaves of DP. Similar magnesium contents were obtained for extracts made of dried and fresh leaves. It is often assumed that the yellowing of the leaves is associated with reduced magnesium content. However, the results indicated that yellow leaves are not due to lower magnesium levels. This stimulates the future analysis of DP leaves considering other essential minerals such as molybdenum or manganese.


Asunto(s)
Dioscorea , Magnesio , Espectrofotometría Atómica , Clorofila , Flavonoides
3.
Eur J Med Chem ; 273: 116502, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38761789

RESUMEN

The cation channel Piezo1, a crucial mechanotransducer found in various organs and tissues, has gained considerable attention as a therapeutic target in recent years. Following this trend, several Piezo1 inhibitors have been discovered and studied for potential pharmacological properties. This review provides an overview of the structural and functional importance of Piezo1, as well as discussing the biological activities of Piezo1 inhibitors based on their mechanism of action. The compounds addressed include the toxin GsMTx4, Aß peptides, certain fatty acids, ruthenium red and gadolinium, Dooku1, as well as the natural products tubeimoside I, salvianolic acid B, jatrorrhzine, and escin. The findings revealed that misexpression of Piezo1 can be associated with a number of chronic diseases, including hypertension, cancer, and hemolytic anemia. Consequently, inhibiting Piezo1 and the subsequent calcium influx can have beneficial effects on various pathological processes, as shown by many in vitro and in vivo studies. However, the development of Piezo1 inhibitors is still in its beginnings, with many opportunities and challenges remaining to be explored.


Asunto(s)
Canales Iónicos , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/metabolismo , Humanos , Animales , Estructura Molecular
4.
J Med Chem ; 67(6): 4870-4888, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38478882

RESUMEN

(E/Z)-3-(4-((E)-1-(4-Hydroxyphenyl)-2-phenylbut-1-enyl)phenyl)acrylic acid (GW7604) as a carrier was esterified with alkenols of various lengths and coordinated through the ethylene moiety to PtCl3, similar to Zeise's salt (K[PtCl3(C2H4)]). The resulting GW7604-Alk-PtCl3 complexes (Alk = Prop, But, Pent, Hex) degraded in aqueous solution only by exchange of the chlorido ligands. For example, GW7604-Pent-PtCl3 coordinated the amino acid alanine in the cell culture medium, bound the isolated nucleotide 5'-GMP, and interacted with the DNA (empty plasmid pSport1). It accumulated in estrogen receptor (ER)-positive MCF-7 cells primarily via cytosolic vesicles, while it was only marginally taken up in ER-negative SKBr3 cells. Accordingly, GW7604-Pent-PtCl3 and related complexes were inactive in SKBr3 cells. GW7604-Pent-PtCl3 showed high affinity to ERα and ERß without mediating agonistic or ER downregulating properties. GW7604-Alk ligands also increased the cyclooxygenase (COX)-2 inhibitory potency of the complexes. In contrast to Zeise's salt, the GW7604-Alk-PtCl3 complexes inhibited COX-1 and COX-2 to the same extent.


Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Receptor alfa de Estrógeno/genética , Células MCF-7 , Proteínas Tirosina Quinasas Receptoras , Receptor beta de Estrógeno , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA