Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440843

RESUMEN

Numerous protocols of cardiac differentiation have been established by essentially focusing on specific growth factors on human pluripotent stem cell (hPSC) differentiation efficiency. However, the optimal environmental factors to obtain cardiac myocytes in network are still unclear. The mesoderm germ layer differentiation is known to be enhanced by low oxygen exposure. Here, we hypothesized that low oxygen exposure enhances the molecular and functional maturity of the cardiomyocytes. We aimed at comparing the molecular and functional consequences of low (5% O2 or LOE) and high oxygen exposure (21% O2 or HOE) on cardiac differentiation of hPSCs in 2D- and 3D-based protocols. hPSC-CMs were differentiated through both the 2D (monolayer) and 3D (embryoid body) protocols using several lines. Cardiac marker expression and cell morphology were assessed. The mitochondrial localization and metabolic properties were evaluated. The intracellular Ca2+ handling and contractile properties were also monitored. The 2D cardiac monolayer can only be differentiated in HOE. The 3D cardiac spheroids containing hPSC-CMs in LOE further exhibited cardiac markers, hypertrophy, steadier SR Ca2+ release properties revealing a better SR Ca2+ handling, and enhanced contractile force. Preserved distribution of mitochondria and similar oxygen consumption by the mitochondrial respiratory chain complexes were also observed. Our results brought evidences that LOE is moderately beneficial for the 3D cardiac spheroids with hPSC-CMs exhibiting further maturity. In contrast, the 2D cardiac monolayers strictly require HOE.


Asunto(s)
Diferenciación Celular , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Oxígeno/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Biomarcadores , Calcio/metabolismo , Técnicas de Cultivo de Célula , Expresión Génica , Humanos , Mitocondrias Cardíacas/metabolismo , Retículo Sarcoplasmático/metabolismo , Esferoides Celulares
2.
J Virol ; 93(9)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30760573

RESUMEN

Cauliflower mosaic virus (CaMV; family Caulimoviridae) responds to the presence of aphid vectors on infected plants by forming specific transmission morphs. This phenomenon, coined transmission activation (TA), controls plant-to-plant propagation of CaMV. A fundamental question is whether other viruses rely on TA. Here, we demonstrate that transmission of the unrelated turnip mosaic virus (TuMV; family Potyviridae) is activated by the reactive oxygen species H2O2 and inhibited by the calcium channel blocker LaCl3 H2O2-triggered TA manifested itself by the induction of intermolecular cysteine bonds between viral helper component protease (HC-Pro) molecules and by the formation of viral transmission complexes, composed of TuMV particles and HC-Pro that mediates vector binding. Consistently, LaCl3 inhibited intermolecular HC-Pro cysteine bonds and HC-Pro interaction with viral particles. These results show that TuMV is a second virus using TA for transmission but using an entirely different mechanism than CaMV. We propose that TuMV TA requires reactive oxygen species (ROS) and calcium signaling and that it is operated by a redox switch.IMPORTANCE Transmission activation, i.e., a viral response to the presence of vectors on infected hosts that regulates virus acquisition and thus transmission, is an only recently described phenomenon. It implies that viruses contribute actively to their transmission, something that has been shown before for many other pathogens but not for viruses. However, transmission activation has been described so far for only one virus, and it was unknown whether other viruses also rely on transmission activation. Here we present evidence that a second virus uses transmission activation, suggesting that it is a general transmission strategy.


Asunto(s)
Áfidos/virología , Brassica rapa , Peróxido de Hidrógeno/metabolismo , Enfermedades de las Plantas/virología , Potyvirus/metabolismo , Animales , Brassica rapa/metabolismo , Brassica rapa/virología , Lantano/farmacología
3.
J Virol ; 89(18): 9665-75, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26178988

RESUMEN

UNLABELLED: The multiplicity of cellular infection (MOI) is the number of virus genomes of a given virus species that infect individual cells. This parameter chiefly impacts the severity of within-host population bottlenecks as well as the intensity of genetic exchange, competition, and complementation among viral genotypes. Only a few formal estimations of the MOI currently are available, and most theoretical reports have considered this parameter as constant within the infected host. Nevertheless, the colonization of a multicellular host is a complex process during which the MOI may dramatically change in different organs and at different stages of the infection. We have used both qualitative and quantitative approaches to analyze the MOI during the colonization of turnip plants by Turnip mosaic virus. Remarkably, different MOIs were observed at two phases of the systemic infection of a leaf. The MOI was very low in primary infections from virus circulating within the vasculature, generally leading to primary foci founded by a single genome. Each lineage then moved from cell to cell at a very high MOI. Despite this elevated MOI during cell-to-cell progression, coinfection of cells by lineages originating in different primary foci is severely limited by the rapid onset of a mechanism inhibiting secondary infection. Thus, our results unveil an intriguing colonization pattern where individual viral genomes initiate distinct lineages within a leaf. Kin genomes then massively coinfect cells, but coinfection by two distinct lineages is strictly limited. IMPORTANCE: The MOI is the size of the viral population colonizing cells and defines major phenomena in virus evolution, like the intensity of genetic exchange and the size of within-host population bottlenecks. However, few studies have quantified the MOI, and most consider this parameter as constant during infection. Our results reveal that the MOI can depend largely on the route of cell infection in a systemically infected leaf. The MOI is usually one genome per cell when cells are infected from virus particles moving long distances in the vasculature, whereas it is much higher during subsequent cell-to-cell movement in mesophyll. However, a fast-acting superinfection exclusion prevents cell coinfection by merging populations originating from different primary foci within a leaf. This complex colonization pattern results in a situation where within-cell interactions are occurring almost exclusively among kin and explains the common but uncharacterized phenomenon of genotype spatial segregation in infected plants.


Asunto(s)
Brassica rapa/virología , Genoma Viral/fisiología , Hojas de la Planta/virología , Tymovirus/fisiología , Tropismo Viral , Animales , Áfidos/virología , Brassica rapa/metabolismo , Hojas de la Planta/metabolismo
4.
Int J Mol Med ; 49(6)2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35475537

RESUMEN

Urokinase plasminogen activator (uPA) and its inhibitor, plasminogen activator inhibitor type 1 (PAI­1), have been reported as prognostic and predictive biomarkers in breast cancer, particularly in patients with node­negative tumors. uPA and PAI­1 expression levels classify patients into a poor­prognosis subgroup, requiring adjuvant chemotherapy and a favorable­prognosis subgroup, which can be considered for de­escalation. However, the clinical use of these two biomarkers remains limited, since fresh­frozen/fresh tumor samples are currently required for their quantification. The aim of the present study was to compare PLAU and SERPINE1 mRNA expression levels (corresponding to uPA and PAI­1 proteins, respectively), assessed using in situ hybridization in 83 formalin­fixed paraffin­embedded (FFPE) breast tumor samples, with uPA and PAI­1 protein expression assessed using immunometric assay with paired fresh­frozen breast cancer samples. The results from the two methods significantly correlated as regards uPA quantification; however, >30% of the samples were discordant, according to the clinically validated threshold. Concordance between the two analytical methods was less prominent for PAI­1 protein and SERPINE1 mRNA. Taken together, the results of the present study indicate that although PLAU and SERPINE1 mRNA may be reliably detected in FFPE samples using in situ hybridization, this technology cannot be used as a substitute for the replacement of the immunometric assay­derived quantification on fresh­frozen samples.


Asunto(s)
Neoplasias de la Mama , Activador de Plasminógeno de Tipo Uroquinasa , Neoplasias de la Mama/patología , Femenino , Formaldehído , Humanos , Hibridación in Situ , Proteínas de la Membrana , Adhesión en Parafina , Inhibidor 1 de Activador Plasminogénico/genética , Inhibidor 1 de Activador Plasminogénico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
5.
Elife ; 112022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35044298

RESUMEN

Clathrin-mediated endocytosis (CME) is a central trafficking pathway in eukaryotic cells regulated by phosphoinositides. The plasma membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) plays an instrumental role in driving CME initiation. The F-BAR domain-only protein 1 and 2 complex (FCHo1/2) is among the early proteins that reach the plasma membrane, but the exact mechanisms triggering its recruitment remain elusive. Here, we show the molecular dynamics of FCHo2 self-assembly on membranes by combining minimal reconstituted in vitro and cellular systems. Our results indicate that PI(4,5)P2 domains assist FCHo2 docking at specific membrane regions, where it self-assembles into ring-like-shaped protein patches. We show that the binding of FCHo2 on cellular membranes promotes PI(4,5)P2 clustering at the boundary of cargo receptors and that this accumulation enhances clathrin assembly. Thus, our results provide a mechanistic framework that could explain the recruitment of early PI(4,5)P2-interacting proteins at endocytic sites.


Asunto(s)
Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitosis/genética , Proteínas de Unión a Ácidos Grasos/genética , Línea Celular Tumoral , Proteínas de Unión a Ácidos Grasos/metabolismo , Humanos
6.
Surg Radiol Anat ; 33(8): 659-64, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21614602

RESUMEN

AIM: The purpose of the present study was to illustrate the modality of rotation of ventral and dorsal pancreatic buds by three-dimensional (3D) reconstructions in the rat embryos, during the Carnegie stages 13-17. MATERIALS AND METHODS: Serial sections of thirty rat embryos stages 13-17, were observed. The embryos were fixed in Bouin's solution, dehydrated, and paraffin embedded. The sections, 7 µm thick, were cut in longitudinal or transverse planes and were stained alternately by hematoxylin-eosin or Heindenhain' azan. The images were digitalized by Canon Camera 350 EOS D. The 3D reconstruction was performed by computer using Cell Image Analyser software. RESULTS: The two pancreatic buds ventral and dorsal, were clearly identified at stage 13, in anterior and posterior position, respectively, in relation to the duodenum. In stage 15, the duodenum started its rotation of 90° clockwise. The ventral bud moved 90° from the midline to the right. In stage 16, the ventral pancreas continued its rotation until 180° in posterior position behind the duodenum. In stage 17, the two pancreatic buds were related closely to the ventral part of the portal vein. The two buds began to merge. The anterior face of the pancreas's head was arising from the dorsal pancreatic bud. The rest of the head including the omental tuberosity and the uncinate process emanated from the ventral pancreatic bud. CONCLUSION: The use of 3D reconstruction of the pancreas of rat embryos illustrates the modality of the two pancreatic buds rotation and fusion. This method explains the final position of the pancreas.


Asunto(s)
Embrión de Mamíferos/embriología , Imagenología Tridimensional , Páncreas/embriología , Animales , Desarrollo Embrionario , Ratas
7.
F1000Res ; 10: 320, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34136134

RESUMEN

Workflows are the keystone of bioimage analysis, and the NEUBIAS (Network of European BioImage AnalystS) community is trying to gather the actors of this field and organize the information around them.  One of its most recent outputs is the opening of the F1000Research NEUBIAS gateway, whose main objective is to offer a channel of publication for bioimage analysis workflows and associated resources. In this paper we want to express some personal opinions and recommendations related to finding, handling and developing bioimage analysis workflows.  The emergence of "big data" in bioimaging and resource-intensive analysis algorithms make local data storage and computing solutions a limiting factor. At the same time, the need for data sharing with collaborators and a general shift towards remote work, have created new challenges and avenues for the execution and sharing of bioimage analysis workflows. These challenges are to reproducibly run workflows in remote environments, in particular when their components come from different software packages, but also to document them and link their parameters and results by following the FAIR principles (Findable, Accessible, Interoperable, Reusable) to foster open and reproducible science. In this opinion paper, we focus on giving some directions to the reader to tackle these challenges and navigate through this complex ecosystem, in order to find and use workflows, and to compare workflows addressing the same problem. We also discuss tools to run workflows in the cloud and on High Performance Computing resources, and suggest ways to make these workflows FAIR.


Asunto(s)
Biología Computacional , Ecosistema , Algoritmos , Almacenamiento y Recuperación de la Información , Flujo de Trabajo
8.
J Vis Exp ; (127)2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28994761

RESUMEN

Structural changes in the retina are common manifestations of ophthalmic diseases. Optical coherence tomography (OCT) enables their identification in vivo-rapidly, repetitively, and at a high resolution. This protocol describes OCT imaging in the mouse retina as a powerful tool to study optic neuropathies (OPN). The OCT system is an interferometry-based, non-invasive alternative to common post mortem histological assays. It provides a fast and accurate assessment of retinal thickness, allowing the possibility to track changes, such as retinal thinning or thickening. We present the imaging process and analysis with the example of the Opa1delTTAG mouse line. Three types of scans are proposed, with two quantification methods: standard and homemade calipers. The latter is best for use on the peripapillary retina during radial scans; being more precise, is preferable for analyzing thinner structures. All approaches described here are designed for retinal ganglion cells (RGC) but are easily adaptable to other cell populations. In conclusion, OCT is efficient in mouse model phenotyping and has the potential to be used for the reliable evaluation of therapeutic interventions.


Asunto(s)
Células Ganglionares de la Retina/metabolismo , Tomografía de Coherencia Óptica/métodos , Animales , Humanos , Ratones , Células Ganglionares de la Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA