Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Appl Environ Microbiol ; 88(22): e0121922, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36286524

RESUMEN

Acetylene (C2H2) is a molecule rarely found in nature, with very few known natural sources, but acetylenotrophic microorganisms can use acetylene as their primary carbon and energy source. As of 2018 there were 15 known strains of aerobic and anaerobic acetylenotrophs; however, we hypothesize there may yet be unrecognized diversity of acetylenotrophs in nature. This study expands the known diversity of acetylenotrophs by isolating the aerobic acetylenotroph, Bradyrhizobium sp. strain I71, from trichloroethylene (TCE)-contaminated soils. Strain I71 is a member of the class Alphaproteobacteria and exhibits acetylenotrophic and diazotrophic activities, the only two enzymatic reactions known to transform acetylene. This unique capability in the isolated strain may increase the genus' economic impact beyond agriculture as acetylenotrophy is closely linked to bioremediation of chlorinated contaminants. Computational analyses indicate that the Bradyrhizobium sp. strain I71 genome contains 522 unique genes compared to close relatives. Moreover, applying a novel hidden Markov model of known acetylene hydratase (AH) enzymes identified a putative AH enzyme. Protein annotation with I-TASSER software predicted the AH from the microbe Syntrophotalea acetylenica as the closest structural and functional analog. Furthermore, the putative AH was flanked by horizontal gene transfer (HGT) elements, like that of AH in anaerobic acetylenotrophs, suggesting an unknown source of acetylene or acetylenic substrate in the environment that is selecting for the presence of AH. IMPORTANCE The isolation of Bradyrhizobium strain I71 expands the distribution of acetylene-consuming microbes to include a group of economically important microorganisms. Members of Bradyrhizobium are well studied for their abilities to improve plant health and increase crop yields by providing bioavailable nitrogen. Additionally, acetylene-consuming microbes have been shown to work in tandem with other microbes to degrade soil contaminants. Based on genome, cultivation, and protein prediction analysis, the ability to consume acetylene is likely not widespread within the genus Bradyrhizobium. These findings suggest that the suite of phenotypic capabilities of strain I71 may be unique and make it a good candidate for further study in several research avenues.


Asunto(s)
Bradyrhizobium , Tricloroetileno , Tricloroetileno/metabolismo , Fijación del Nitrógeno/genética , Suelo/química , Acetileno/metabolismo , Filogenia , Simbiosis , ARN Ribosómico 16S/genética , Nódulos de las Raíces de las Plantas/microbiología , ADN Bacteriano/genética , Análisis de Secuencia de ADN
2.
Artículo en Inglés | MEDLINE | ID: mdl-33570486

RESUMEN

A Gram-stain-negative, strictly anaerobic, non-motile, rod-shaped bacterium, designated SFB93T, was isolated from the intertidal sediments of South San Francisco Bay, located near Palo Alto, CA, USA. SFB93T was capable of acetylenotrophic and diazotrophic growth, grew at 22-37 °C, pH 6.3-8.5 and in the presence of 10-45 g l-1 NaCl. Phylogenetic analyses based on 16S rRNA gene sequencing showed that SFB93T represented a member of the genus Syntrophotalea with highest 16S rRNA gene sequence similarities to Syntrophotalea acetylenica DSM 3246T (96.6 %), Syntrophotalea carbinolica DSM 2380T (96.5 %), and Syntrophotalea venetiana DSM 2394T (96.7 %). Genome sequencing revealed a genome size of 3.22 Mbp and a DNA G+C content of 53.4 %. SFB93T had low genome-wide average nucleotide identity (81-87.5 %) and <70 % digital DNA-DNA hybridization value with other members of the genus Syntrophotalea. The phylogenetic position of SFB93T within the family Syntrophotaleaceae and as a novel member of the genus Syntrophotalea was confirmed via phylogenetic reconstruction based on concatenated alignments of 92 bacterial core genes. On the basis of the results of phenotypic, genotypic and phylogenetic analyses, a novel species, Syntrophotalea acetylenivorans sp. nov., is proposed, with SFB93T (=DSM 106009T=JCM 33327T=ATCC TSD-118T) as the type strain.

3.
Appl Environ Microbiol ; 83(17)2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28667109

RESUMEN

Acetylene (C2H2) is a trace constituent of the present Earth's oxidizing atmosphere, reflecting a mixture of terrestrial and marine emissions from anthropogenic, biomass-burning, and unidentified biogenic sources. Fermentation of acetylene was serendipitously discovered during C2H2 block assays of N2O reductase, and Pelobacter acetylenicus was shown to grow on C2H2 via acetylene hydratase (AH). AH is a W-containing, catabolic, low-redox-potential enzyme that, unlike nitrogenase (N2ase), is specific for acetylene. Acetylene fermentation is a rare metabolic process that is well characterized only in P. acetylenicus DSM3246 and DSM3247 and Pelobacter sp. strain SFB93. To better understand the genetic controls for AH activity, we sequenced the genomes of the three acetylene-fermenting Pelobacter strains. Genome assembly and annotation produced three novel genomes containing gene sequences for AH, with two copies being present in SFB93. In addition, gene sequences for all five compulsory genes for iron-molybdenum N2ase were also present in the three genomes, indicating the cooccurrence of two acetylene transformation pathways. Nitrogen fixation growth assays showed that DSM3426 could ferment acetylene in the absence of ammonium, but no ethylene was produced. However, SFB93 degraded acetylene and, in the absence of ammonium, produced ethylene, indicating an active N2ase. Diazotrophic growth was observed under N2 but not in experimental controls incubated under argon. SFB93 exhibits acetylene fermentation and nitrogen fixation, the only known biochemical mechanisms for acetylene transformation. Our results indicate complex interactions between N2ase and AH and suggest novel evolutionary pathways for these relic enzymes from early Earth to modern days.IMPORTANCE Here we show that a single Pelobacter strain can grow via acetylene fermentation and carry out nitrogen fixation, using the only two enzymes known to transform acetylene. These findings provide new insights into acetylene transformations and adaptations for nutrient (C and N) and energy acquisition by microorganisms. Enhanced understanding of acetylene transformations (i.e., extent, occurrence, and rates) in modern environments is important for the use of acetylene as a potential biomarker for extraterrestrial life and for degradation of anthropogenic contaminants.


Asunto(s)
Acetileno/metabolismo , Deltaproteobacteria/metabolismo , Anaerobiosis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Deltaproteobacteria/enzimología , Deltaproteobacteria/genética , Deltaproteobacteria/crecimiento & desarrollo , Fermentación , Genoma Bacteriano , Hidroliasas/genética , Hidroliasas/metabolismo , Molibdeno/metabolismo , Fijación del Nitrógeno , Nitrogenasa/genética , Nitrogenasa/metabolismo , Filogenia
4.
Environ Sci Technol ; 51(4): 2366-2372, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28075122

RESUMEN

Acetylene (C2H2) can be generated in contaminated groundwater sites as a consequence of chemical degradation of trichloroethene (TCE) by in situ minerals, and C2H2 is known to inhibit bacterial dechlorination. In this study, we show that while high C2H2 (1.3 mM) concentrations reversibly inhibit reductive dechlorination of TCE by Dehalococcoides mccartyi isolates as well as enrichment cultures containing D. mccartyi sp., low C2H2 (0.4 mM) concentrations do not inhibit growth or metabolism of D. mccartyi. Cocultures of Pelobacter SFB93, a C2H2-fermenting bacterium, with D. mccartyi strain 195 or with D. mccartyi strain BAV1 were actively sustained by providing acetylene as the electron donor and carbon source while TCE or cis-DCE served as the electron acceptor. Inhibition by acetylene of reductive dechlorination and methanogenesis in the enrichment culture ANAS was observed, and the inhibition was removed by adding Pelobacter SFB93 into the consortium. Transcriptomic analysis of D. mccartyi strain 195 showed genes encoding for reductive dehalogenases (e.g., tceA) were not affected during the C2H2-inhibition, while genes encoding for ATP synthase, biosynthesis, and Hym hydrogenase were down-regulated during C2H2 inhibition, consistent with the physiological observation of lower cell yields and reduced dechlorination rates in strain 195. These results will help facilitate the optimization of TCE-bioremediation at contaminated sites containing both TCE and C2H2.


Asunto(s)
Acetileno/metabolismo , Tricloroetileno/metabolismo , Biodegradación Ambiental , Chloroflexi/metabolismo , Halogenación
5.
mBio ; 12(1)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531396

RESUMEN

In aquifers, acetylene (C2H2) is a product of abiotic degradation of trichloroethene (TCE) catalyzed by in situ minerals. C2H2 can, in turn, inhibit multiple microbial processes including TCE dechlorination and metabolisms that commonly support dechlorination, in addition to supporting the growth of acetylenotrophic microorganisms. Previously, C2H2 was shown to support TCE reductive dechlorination in synthetic, laboratory-constructed cocultures containing the acetylenotroph Pelobacter sp. strain SFB93 and Dehalococcoides mccartyi strain 195 or strain BAV1. In this study, we demonstrate TCE and perchloroethene (PCE) reductive dechlorination by a microbial community enriched from contaminated groundwater and amended with C2H2 as the sole electron donor and organic carbon source. The metagenome of the stable, enriched community was analyzed to elucidate putative community functions. A novel anaerobic acetylenotroph in the phylum Actinobacteria was identified using metagenomic analysis. These results demonstrate that the coupling of acetylenotrophy and reductive dechlorination can occur in the environment with native bacteria and broaden our understanding of biotransformation at contaminated sites containing both TCE and C2H2IMPORTANCE Understanding the complex metabolisms of microbial communities in contaminated groundwaters is a challenge. PCE and TCE are among the most common groundwater contaminants in the United States that, when exposed to certain minerals, exhibit a unique abiotic degradation pathway in which C2H2 is a product. C2H2 can act as both an inhibitor of TCE dechlorination and of supporting metabolisms and an energy source for acetylenotrophic bacteria. Here, we combine laboratory microcosm studies with computational approaches to enrich and characterize an environmental microbial community that couples two uncommon metabolisms, demonstrating unique metabolic interactions only yet reported in synthetic, laboratory-constructed settings. Using this comprehensive approach, we have identified the first reported anaerobic acetylenotroph in the phylum Actinobacteria, demonstrating the yet-undescribed diversity of this metabolism that is widely considered to be uncommon.


Asunto(s)
Acetileno/metabolismo , Actinobacteria/metabolismo , Agua Subterránea , Tricloroetileno/metabolismo , Biodegradación Ambiental , Etano/análogos & derivados , Etano/metabolismo , Agua Subterránea/análisis , Halogenación , Hidrocarburos Clorados/metabolismo , Metagenómica , Microbiota
6.
Nat Commun ; 10(1): 3985, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31484932

RESUMEN

Elementary tellurium is currently of great interest as an element with potential promise in nano-technology applications because of the recent discovery regarding its three two-dimensional phases and the existence of Weyl nodes around its Femi level. Here, we report on the unique nano-photonic properties of elemental tellurium particles [Te(0)], as harvest from a culture of a tellurium-oxyanion respiring bacteria. The bacterially-formed nano-crystals prove effective in the photonic applications tested compared to the chemically-formed nano-materials, suggesting a unique and environmentally friendly route of synthesis. Nonlinear optical measurements of this material reveal the strong saturable absorption and nonlinear optical extinctions induced by Mie scattering over broad temporal and wavelength ranges. In both cases, Te-nanoparticles exhibit superior optical nonlinearity compared to graphene. We demonstrate that biological tellurium can be used for a variety of photonic applications which include their proof-of-concept for employment as ultrafast mode-lockers and all-optical switches.

7.
Genome Announc ; 5(6)2017 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-28183759

RESUMEN

Acetylene fermentation is a rare metabolism that was serendipitously discovered during C2H2-block assays of N2O reductase. Here, we report the genome sequences of two type strains of acetylene-fermenting Pelobacter acetylenicus, the freshwater bacterium DSM 3246 and the estuarine bacterium DSM 3247.

8.
Genome Announc ; 5(6)2017 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-28183760

RESUMEN

Acetylene fermentation is a rare metabolism that was previously reported as being unique to Pelobacter acetylenicus Here, we report the genome sequence of Pelobacter sp. strain SFB93, an acetylene-fermenting bacterium isolated from sediments collected in San Francisco Bay, CA.

9.
Astrobiology ; 15(11): 977-86, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26539733

RESUMEN

UNLABELLED: We report the first study of stable carbon isotope fractionation during microbial fermentation of acetylene (C2H2) in sediments, sediment enrichments, and bacterial cultures. Kinetic isotope effects (KIEs) averaged 3.7 ± 0.5‰ for slurries prepared with sediment collected at an intertidal mudflat in San Francisco Bay and 2.7 ± 0.2‰ for a pure culture of Pelobacter sp. isolated from these sediments. A similar KIE of 1.8 ± 0.7‰ was obtained for methanogenic enrichments derived from sediment collected at freshwater Searsville Lake, California. However, C2H2 uptake by a highly enriched mixed culture (strain SV7) obtained from Searsville Lake sediments resulted in a larger KIE of 9.0 ± 0.7‰. These are modest KIEs when compared with fractionation observed during oxidation of C1 compounds such as methane and methyl halides but are comparable to results obtained with other C2 compounds. These observations may be useful in distinguishing biologically active processes operating at distant locales in the Solar System where C2H2 is present. These locales include the surface of Saturn's largest moon Titan and the vaporous water- and hydrocarbon-rich jets emanating from Enceladus. KEY WORDS: Acetylene-Fermentation-Isotope fractionation-Enceladus-Life detection.


Asunto(s)
Acetileno/metabolismo , Isótopos de Carbono/análisis , Fermentación , Hidrocarburos/análisis , Hielo , Vida , Planetas , Cromatografía de Gases y Espectrometría de Masas , Volatilización
10.
Microorganisms ; 3(2): 290-309, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-27682090

RESUMEN

The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ(13)CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively (12)C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation.

11.
Front Microbiol ; 5: 275, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24987389

RESUMEN

We examined the potential for CH4 oxidation to be coupled with oxygen derived from the dissimilatory reduction of perchlorate, chlorate, or via chlorite (ClO(-) 2) dismutation. Although dissimilatory reduction of ClO(-) 4 and ClO(-) 3 could be inferred from the accumulation of chloride ions either in spent media or in soil slurries prepared from exposed freshwater lake sediment, neither of these oxyanions evoked methane oxidation when added to either anaerobic mixed cultures or soil enriched in methanotrophs. In contrast, ClO(-) 2 amendment elicited such activity. Methane (0.2 kPa) was completely removed within several days from the headspace of cell suspensions of Dechloromonas agitata CKB incubated with either Methylococcus capsulatus Bath or Methylomicrobium album BG8 in the presence of 5 mM ClO(-) 2. We also observed complete removal of 0.2 kPa CH4 in bottles containing soil enriched in methanotrophs when co-incubated with D. agitata CKB and 10 mM ClO(-) 2. However, to be effective these experiments required physical separation of soil from D. agitata CKB to allow for the partitioning of O2 liberated from chlorite dismutation into the shared headspace. Although a link between ClO(-) 2 and CH4 consumption was established in soils and cultures, no upstream connection with either ClO(-) 4 or ClO(-) 3 was discerned. This result suggests that the release of O2 during enzymatic perchlorate reduction was negligible, and that the oxygen produced was unavailable to the aerobic methanotrophs.

12.
Appl Environ Microbiol ; 73(7): 2135-43, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17277198

RESUMEN

Certain toxic elements support the metabolism of diverse prokaryotes by serving as respiratory electron acceptors for growth. Here, we demonstrate that two anaerobes previously shown to be capable of respiring oxyanions of selenium also achieve growth by reduction of either tellurate [Te(VI)] or tellurite [Te(IV)] to elemental tellurium [Te(0)]. This reduction achieves a sizeable stable-Te-isotopic fractionation (isotopic enrichment factor [epsilon] = -0.4 to -1.0 per ml per atomic mass unit) and results in the formation of unique crystalline Te(0) nanoarchitectures as end products. The Te(0) crystals occur internally within but mainly externally from the cells, and each microorganism forms a distinctly different structure. Those formed by Bacillus selenitireducens initially are nanorods ( approximately 10-nm diameter by 200-nm length), which cluster together, forming larger ( approximately 1,000-nm) rosettes composed of numerous individual shards ( approximately 100-nm width by 1,000-nm length). In contrast, Sulfurospirillum barnesii forms extremely small, irregularly shaped nanospheres (diameter < 50 nm) that coalesce into larger composite aggregates. Energy-dispersive X-ray spectroscopy and selected area electron diffraction indicate that both biominerals are composed entirely of Te and are crystalline, while Raman spectroscopy confirms that they are in the elemental state. These Te biominerals have specific spectral signatures (UV-visible light, Raman) that also provide clues to their internal structures. The use of microorganisms to generate Te nanomaterials may be an alternative for bench-scale syntheses. Additionally, they may also generate products with unique properties unattainable by conventional physical/chemical methods.


Asunto(s)
Bacillus/metabolismo , Epsilonproteobacteria/metabolismo , Nanopartículas , Telurio/metabolismo , Anaerobiosis , Bacillus/crecimiento & desarrollo , Transporte de Electrón , Microscopía Electrónica , Espectrofotometría Ultravioleta , Espectrometría Raman , Telurio/química
13.
Environ Sci Technol ; 37(8): 1698-704, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12731856

RESUMEN

Use of methyl bromide (MeBr) as a quarantine, commodity, or structural fumigant is under scrutiny because its release to the atmosphere contributes to the depletion of stratospheric ozone. A closed-system bioreactor consisting of 0.5 L of a growing culture of a previously described bacterium, strain IMB-1, removed MeBr (> 110 micromol L(-1)) from recirculating air. Strain IMB-1 grew slowly to high cell densities in the bioreactor using MeBr as its sole carbon and energy source. Bacterial oxidation of MeBr produced CO2 and hydrobromic acid (HBr), which required continuous neutralization with NaOH for the system to operate effectively. Strain IMB-1 was capable of sustained oxidation of large amounts of MeBr (170 mmol in 46 d). In an open-system bioreactor (10-L fermenter), strain IMB-1 oxidized a continuous supply of MeBr (220 /micromol L(-1) in air). Growth was continuous, and 0.5 mol of MeBr was removed from the air supply in 14 d. The specific rate of MeBr oxidation was 7 x 10(-16) mol cell(-1) h(-1). Bioreactors such as these can therefore be used to remove large quantities of contaminant MeBr, which opens the possibility of biodegradation as a practical means for its disposal.


Asunto(s)
Contaminación del Aire/prevención & control , Reactores Biológicos , Hidrocarburos Bromados/aislamiento & purificación , Bacterias , Biodegradación Ambiental , Fumigación , Hidrocarburos Bromados/química , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA