RESUMEN
The current understanding of multistress interplay assumes stresses occur in perfect synchrony, but this assumption is rarely met in the natural marine ecosystem. To understand the interplay between nonperfectly overlapped stresses in the ocean, we manipulated a multigenerational experiment (F0-F3) to explore how different temporal scenarios of ocean acidification will affect mercury toxicity in a marine copepod Pseudodiaptomus annandalei. We found that the scenario of past acidification aggravated mercury toxicity but current and persistent acidification mitigated its toxicity. We specifically performed a proteomics analysis for the copepods of F3. The results indicated that current and persistent acidification initiated the energy compensation for development and mercury efflux, whereas past acidification lacked the barrier of H+ and had dysfunction in the detoxification and efflux system, providing a mechanistic understanding of mercury toxicity under different acidification scenarios. Furthermore, we conducted a meta-analysis on marine animals, demonstrating that different acidification scenarios could alter the toxicity of several other metals, despite evidence from nonsynchronous scenarios remaining limited. Our study thus demonstrates that time and duration of ocean acidification modulate mercury toxicity in marine copepods and suggests that future studies should move beyond the oversimplified scenario of perfect synchrony in understanding multistress interaction.
Asunto(s)
Mercurio , Animales , Mercurio/toxicidad , Agua de Mar , Ecosistema , Concentración de Iones de Hidrógeno , Acidificación de los Océanos , MetalesRESUMEN
Microplastic contamination has been considered as a global environmental problem in marine ecosystem. Due to small size (< 5 mm) in overlapping with that of microalgae, microplastics can easily be ingested by a wide range of marine copepods both in the laboratory and in situ. Although many studies have reported adverse effects of microplastics on marine copepods, it still lacks a systematic overview about the bioavailability of microplastics and their potential ecological consequences. As copepods dominate zooplankton biomass and provide an essential trophic link in marine ecosystem, this review indicates the bioavailability and toxicity of microplastics in such taxon depend on the shape, size, abundance, and properties of plastics. Also, ours is purposed to tease out the possible molecular mechanisms behind. Microplastic ingestion is prevalent; they impede food intake, block the digestive tract, and cause physiological stress in copepods (e.g., immune responses, metabolism disorders, energy depletion, behavioral alterations, growth retardation, and reproduction disturbance). Notably, in response to microplastic exposure, the copepods show both species- and stage-specificity. Furthermore, microplastics can serve as vectors of organic contaminants (e.g., triclosan, chlorpyrifos, and dibutyl phthalate) and thus increase their toxicity in marine copepods, consequently aggravating the adverse impacts of microplastics in marine ecosystem. Given that most previous studies have partially used pristine microplastics and their short-term exposure might have undervalued their negative effects, more multigenerational mechanistic researches (for example, via an integration of omics-based technology and phenotypic trait analysis) are urgently required for numerous marine copepods exposed to environmental-characteristics plastics as demonstrated by aged microplastics at environmentally realistic concentrations and added with other environmental pollutants; thus it will not only provide mechanistic insights into the biological impacts of microplastics, but also help make the seawater-benchmark setting and ecological assessment for microplastic pollution in marine environment.
Asunto(s)
Copépodos/fisiología , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Disponibilidad Biológica , Biomasa , Copépodos/efectos de los fármacos , Ecosistema , Monitoreo del Ambiente , Microalgas , Plásticos/análisis , Reproducción , Agua de Mar , ZooplanctonRESUMEN
Marine biota have been co-challenged with ocean warming and mercury (Hg) pollution over many generations because of human activities; however, the molecular mechanisms to explain their combined effects are not well understood. In this study, a marine planktonic copepod Pseudodiaptomus annandalei was acutely exposed to different temperature (22 and 25 °C) and Hg (0 and 118 µg/L) treatments in a 24-h cross-factored experiment. Hg accumulation and its subcellular fractions were determined in the copepods after exposure. The expression of the genes of superoxide dismutase (SOD), glutathione peroxidase (GPx), metallothionein1 (mt1), heat shock protein 70 (hsp70), hsp90, hexokinase (hk), and pyruvate kinase (pk) was also analyzed. Both the Hg treatment alone and the combined exposure of warmer temperature plus Hg pollution remarkably facilitated Hg bioaccumulation in the exposed copepods. Compared with the Hg treatment alone, the combined exposure increased total Hg accumulation and also the amount of Hg stored in the metal-sensitive fractions (MSF), suggesting elevated Hg toxicity in P. annandalei under a warmer environment, given that the MSF is directly related to metal toxicity. The warmer temperature significantly up-regulated the mRNA levels of mt1, hsp70, hsp90, and hk, indicating the copepods suffered from thermal stress. With exposure to Hg, the mRNA level of SOD increased strikingly but the transcript levels of hsp90, hk, and pk decreased significantly, indicating that Hg induced toxic events (e.g., oxidative damage and energy depletion). Particularly, in contrast to the Hg treatment alone, the combined exposure significantly down-regulated the mRNA levels of SOD and GPx but up-regulated the mRNA levels of mt1, hsp70, hsp90, hk, and pk. Collectively, the results of this study indicate that ocean warming will potentially boost Hg toxicity in the marine copepod P. annandalei, which is information that will increase the accuracy of the projections of marine ecosystem responses to the joint effects of climate change stressors and metal pollution on the future ocean.
Asunto(s)
Copépodos/efectos de los fármacos , Calor , Mercurio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Copépodos/genética , Copépodos/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Mercurio/farmacocinética , Metalotioneína/genética , Metalotioneína/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , ARN Mensajero/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba , Contaminantes Químicos del Agua/farmacocinéticaRESUMEN
Probiotic is well known because of its health benefit on the host, including improve growth, treat disease, and enhance immunity. Currently, probiotic has been widely used in aquaculture. However, there is little information about the effect of probiotic on turbot. Therefore, an effort was made to explore the effect of a multi-strain probiotic on growth performance, non-specific immune response, and intestinal health of juvenile turbot, Scophthalmus maximus L. One hundred eighty juvenile turbot (20.04 ± 0.23 g) were randomly divided into three groups (T0, T1, T2), and fed diet were formulated to contain 0%, 1%, and 5% multi-strain probiotic, respectively. Sixty days after the feeding experiment, the growth performance, body composition, enzyme activities, and intestinal microorganism of turbot were analyzed. T2 and T1 showed better growth performance and significant higher (P < 0.05) enzyme activities than T0 (except lysozyme). Moreover, the IV (intestinal villus), IW (intestinal wall), and GC (goblet cell) were well modulated in probiotic treatments. Furthermore, Lactobacillus was found colonized in the intestine of the group fed with 5% multi-strain probiotic. These results suggested adding dietary multi-strain probiotic could positively affect for turbot aquaculture.
Asunto(s)
Peces Planos , Probióticos/farmacología , Alimentación Animal , Animales , Acuicultura/métodos , Bacterias/genética , Bacterias/aislamiento & purificación , Dieta/veterinaria , Peces Planos/crecimiento & desarrollo , Peces Planos/inmunología , Peces Planos/microbiología , Microbioma Gastrointestinal/genética , Mucosa Intestinal/anatomía & histología , Mucosa Intestinal/enzimología , Mucosa Intestinal/microbiología , Muramidasa/genética , Muramidasa/metabolismo , Músculos/metabolismo , ARN Mensajero/metabolismoRESUMEN
Triplicate groups of sea cucumbers (4.83 ± 0.15 g) were exposed to one of the four nominal concentrations of dietary mercury [0 (control), 67.6, 338, and 676 mg/kg dry weight, and actually total mercury were 17.55, 87.00, 275.50, 468.50 mg/kg, respectively; Table 3] for 21 days. Mercury accumulation in the intestine showed the greatest mercury burden (77.96 ± 1.20 mg Hg/kg tissue wet weight basis). However, survival rate (SR) was not affected. Body weight gain after the 676 mg Hg/kg treatment was significantly lower than the control group. The feed conversion rate of the 676 mg Hg/kg treatment group was significantly higher than the control group. Additionally, the superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) of sea cucumbers decreased as the mercury dose increased. SOD, T-AOC and alkaline phosphatase of the 676 mg Hg/kg treatment group were significantly lower than the control group. However, there were no significant differences between the four groups in acid phosphatase and catalase (CAT) activity.
Asunto(s)
Mercurio/toxicidad , Stichopus/fisiología , Contaminantes Químicos del Agua/toxicidad , Fosfatasa Alcalina/metabolismo , Animales , Antioxidantes/metabolismo , Dieta , Exposición Dietética , Inmunidad Innata , Intestinos , Mercurio/metabolismo , Pepinos de Mar , Stichopus/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Contaminantes Químicos del Agua/metabolismoRESUMEN
Here, we subjected the marine copepod Tigriopus japonicus to environmentally-relevant concentrations of microplastics (MPs) and mercury (Hg) for three generations (F0-F2) to investigate their physiological and molecular responses. Hg accumulation and phenotypic traits were measured in each generation, with multi-omics analysis conducted in F2. The results showed that MPs insignificantly impacted the copepod's development and reproduction, however, which were significantly compromised by Hg exposure. Interestingly, MPs significantly increased Hg accumulation and consequently aggravated this metal toxicity in T. japonicus, demonstrating their carrier role. Multi-omics analysis indicated that Hg pollution produced numerous toxic events, e.g., induction of apoptosis, damage to cell/organ morphogenesis, and disordered energy metabolism, ultimately resulting in retarded development and decreased fecundity. Importantly, MPs enhanced Hg toxicity mainly via increased oxidative apoptosis, compromised cell/organ morphogenesis, and energy depletion. Additionally, phosphoproteomic analysis revealed extensive regulation of the above processes, and also impaired neuron activity under combined MPs and Hg exposure. These alterations adversely affected development and reproduction of T. japonicus. Overall, our findings should offer novel molecular insights into the response of T. japonicus to long-term exposure to MPs and Hg, with a particular emphasis on the carrier role of MPs on Hg toxicity.
Asunto(s)
Copépodos , Mercurio , Microplásticos , Contaminantes Químicos del Agua , Animales , Copépodos/efectos de los fármacos , Mercurio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Reproducción/efectos de los fármacos , Apoptosis/efectos de los fármacos , Proteómica , MultiómicaRESUMEN
Due to human activities, high abundances of nano/microplastics (N/MPs) concurrent with metal pollution have become a serious problem in the global marine environment. Because of displaying a high surface-area-to-volume ratio, N/MPs can serve as the carriers of metals and thus increase their accumulation/toxicity in marine biota. As one of the most toxic metals, mercury (Hg) causes adverse effects on marine organisms but whether environmentally relevant N/MPs can play a vector role of this metal in marine biota, as well as their interaction, is poorly known. To evaluate the vector role of N/MPs in Hg toxicity, we first performed the adsorption kinetics and isotherms of N/MPs and Hg in seawater, as well as ingestion/egestion of N/MPs by marine copepod Tigriopus japonicus, and second, the copepod T. japonicus was exposed to polystyrene (PS) N/MPs (500-nm, 6-µm) and Hg in isolation, combined, and incubated forms at environmentally relevant concentrations for 48 h. Also, the physiological and defense performance including antioxidant response, detoxification/stress, energy metabolism, and development-related genes were assessed after exposure. The results indicated N/MPs significantly increased Hg accumulation and thus its toxicity effects in T. japonicus as exemplified by decreased transcription of genes related to development and energy metabolism and increased transcriptional levels of genes functioning in antioxidant and detoxification/stress defense. More importantly, NPs were superimposed onto MPs and produced the most vector effect in Hg toxicity to T. japonicus, especially in the incubated forms. Overall, this study highlighted the role of N/MPs as a potential risk factor for increasing the adverse effects of Hg pollution, and emphasized the adsorption forms of contaminants by N/MPs should doubly be considered in the continuing researches.
Asunto(s)
Copépodos , Mercurio , Contaminantes Químicos del Agua , Animales , Humanos , Microplásticos/toxicidad , Plásticos/metabolismo , Antioxidantes/metabolismo , Contaminantes Químicos del Agua/análisis , Mercurio/metabolismoRESUMEN
Coastal waters have experienced fluctuations in partial pressure of carbon dioxide (pCO2) and mercury (Hg) pollution, yet little is known concerning how natural pCO2 fluctuations affect Hg biotoxicity. Here, a marine copepod Tigriopus japonicus was interactively exposed to different seawater pCO2 (ambient 400, steady elevated 1000, and fluctuating elevated 1000 ± 600 µatm) scenarios and Hg (control, 2 µg/L) treatments for 7 d. The results showed that elevated pCO2 decreased Hg bioaccumulation, and it was even more under fluctuating elevated pCO2 condition. We found energy depletion and oxidative stress under Hg-treated copepods, while combined exposure initiated compensatory response to alleviate Hg toxicity. Intriguingly, fluctuating acidification presented more immune defense related genes/processes in Hg-treated copepods when compared to steady acidification, probably linking with the greater decrease in Hg bioaccumulation. Collectively, understanding how fluctuating acidification interacts with Hg contaminant will become more crucial in predicting their risks to coastal biota and ecosystems.
Asunto(s)
Copépodos , Mercurio , Contaminantes Químicos del Agua , Animales , Copépodos/fisiología , Dióxido de Carbono , Ecosistema , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Mercurio/toxicidad , Agua de Mar , Concentración de Iones de HidrógenoRESUMEN
Here, we examined the 48-h acute toxicity of cadmium (Cd) in the marine copepod Tigriopus japonicus under two pCO2 concentrations (400 and 1000 µatm). Subsequently, T. japonicus was interactively exposed to different pCO2 (400, 1000 µatm) and Cd (control, 500 µg/L) treatments for 48 h. After exposure, biochemical and physiological responses were analyzed for the copepods. The results showed that the 48-h LC50 values of Cd were calculated as 12.03 mg/L and 9.08 mg/L in T. japonicus, respectively, under 400 and 1000 µatm pCO2 conditions. Cd exposure significantly promoted Cd exclusion/glycolysis, detoxification/stress response, and oxidative stress/apoptosis while it depressed that of antioxidant capacity. Intriguingly, CO2-driven acidification enhanced Cd bioaccumulation and its toxicity in T. japonicus. Overall, our study provides a mechanistic understanding about the interaction between seawater acidification and Cd pollution in marine copepods.
Asunto(s)
Copépodos , Contaminantes Químicos del Agua , Animales , Cadmio/toxicidad , Dióxido de Carbono/toxicidad , Concentración de Iones de Hidrógeno , Agua de Mar , Contaminantes Químicos del Agua/toxicidadRESUMEN
A 30-days feeding trail was conducted to determine the sensitivity of Carassius auratus to the toxicological effects of elevated dietary Selenomethionine (Se-Met). C. auratus averaging 23.56⯱â¯1.82â¯g were exposed to four Se-Met concentrations (mgâ¯Se/kg): 0 (Se-Met0), 5 (Se-Met5), 10 (Se-Met10) and 20 (Se-Met20) to estimate the effects on tissue selenium (Se) accumulation, blood biochemical profiles, transcript expression and intestinal microbiota. Se accumulated in the kidney, liver and muscle in a dose-dependent manner and followed this order: kidneyâ¯>â¯liverâ¯>â¯muscle, the highest accumulation were obtained in kidney of Se-Met20 diet after 30â¯days of feeding. Serum contents of alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) in fish exposed to Se-Met20 group was significantly highest among Se-Met exposure groups. Hydrogen peroxide (H2O2) concentrations in liver were affected by dietary Se-Met exposures. Liver contents of total antioxidant capacity (TAC), catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA) in fish exposure to Se-Met5 group was significantly highest among Se-Met exposure groups. Growth hormone receptor (GHR), insulin-like growth factor 1 (IGF-1) and antioxidant enzyme related genes including glutathione peroxidase (GPx), catalase (CAT) and glutathione S-transferase (GST) expression in liver were down-regulated with the concentration of Se-Met exposure groups. The results of high-throughput sequencing showed that gut microbial communities and hierarchy cluster heatmap analysis were significantly affected by Se-Met exposure. The abundances of Cetobacterium and Vibrio increased while fish exposed to Se-Met20 group. The abundance of Ralstonia increased when the Se-Met exposure dose reached 10â¯mgâ¯Seâ¯kg-1. The results suggested that the exposure to elevated dietary Se-Met may result toxic effects in C. auratus.