Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(27): 8451-6, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26100902

RESUMEN

Activity of the RNA ligase RtcB has only two known functions: tRNA ligation after intron removal and XBP1 mRNA ligation during activation of the unfolded protein response. Here, we show that RtcB acts in neurons to inhibit axon regeneration after nerve injury. This function of RtcB is independent of its basal activities in tRNA ligation and the unfolded protein response. Furthermore, inhibition of axon regeneration is independent of the RtcB cofactor archease. Finally, RtcB is enriched at axon termini after nerve injury. Our data indicate that neurons have co-opted an ancient RNA modification mechanism to regulate specific and dynamic functions and identify neuronal RtcB activity as a critical regulator of neuronal growth potential.


Asunto(s)
Aminoacil-ARNt Sintetasas/metabolismo , Axones/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Regeneración Nerviosa , ARN Ligasa (ATP)/metabolismo , ARN de Helminto/metabolismo , Aminoacil-ARNt Sintetasas/genética , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Axotomía/métodos , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Mutación , Neuronas/metabolismo , Neuronas/fisiología , ARN Ligasa (ATP)/genética , ARN de Helminto/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
4.
Neuron ; 92(6): 1308-1323, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28009276

RESUMEN

Axon regeneration is essential to restore the nervous system after axon injury. However, the neuronal cell biology that underlies axon regeneration is incompletely understood. Here we use in vivo, single-neuron analysis to investigate the relationship between nerve injury, mitochondrial localization, and axon regeneration. Mitochondria translocate into injured axons so that average mitochondria density increases after injury. Moreover, single-neuron analysis reveals that axons that fail to increase mitochondria have poor regeneration. Experimental alterations to axonal mitochondrial distribution or mitochondrial respiratory chain function result in corresponding changes to regeneration outcomes. Axonal mitochondria are specifically required for growth-cone migration, identifying a key energy challenge for injured neurons. Finally, mitochondrial localization to the axon after injury is regulated in part by dual-leucine zipper kinase 1 (DLK-1), a conserved regulator of axon regeneration. These data identify regulation of axonal mitochondria as a new cell-biological mechanism that helps determine the regenerative response of injured neurons.


Asunto(s)
Adenosina Trifosfato/metabolismo , Axones/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Regeneración Nerviosa , Animales , Axones/ultraestructura , Transporte Biológico , Caenorhabditis elegans , Microscopía Confocal , Mitocondrias/ultraestructura , Regeneración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA