Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 207(5): 1357-1370, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34380651

RESUMEN

Zinc (Zn) is required for proper immune function and host defense. Zn homeostasis is tightly regulated by Zn transporters that coordinate biological processes through Zn mobilization. Zn deficiency is associated with increased susceptibility to bacterial infections, including Streptococcus pneumoniae, the most commonly identified cause of community-acquired pneumonia. Myeloid cells, including macrophages and dendritic cells (DCs), are at the front line of host defense against invading bacterial pathogens in the lung and play a critical role early on in shaping the immune response. Expression of the Zn transporter ZIP8 is rapidly induced following bacterial infection and regulates myeloid cell function in a Zn-dependent manner. To what extent ZIP8 is instrumental in myeloid cell function requires further study. Using a novel, myeloid-specific, Zip8 knockout model, we identified vital roles of ZIP8 in macrophage and DC function upon pneumococcal infection. Administration of S. pneumoniae into the lung resulted in increased inflammation, morbidity, and mortality in Zip8 knockout mice compared with wild-type counterparts. This was associated with increased numbers of myeloid cells, cytokine production, and cell death. In vitro analysis of macrophage and DC function revealed deficits in phagocytosis and increased cytokine production upon bacterial stimulation that was, in part, due to increased NF-κB signaling. Strikingly, alteration of myeloid cell function resulted in an imbalance of Th17/Th2 responses, which is potentially detrimental to host defense. These results (for the first time, to our knowledge) reveal a vital ZIP8- and Zn-mediated axis that alters the lung myeloid cell landscape and the host response against pneumococcus.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Células Dendríticas/inmunología , Macrófagos/inmunología , Células Mieloides/inmunología , Neumonía Neumocócica/inmunología , Streptococcus pneumoniae/fisiología , Células Th17/inmunología , Células Th2/inmunología , Animales , Proteínas de Transporte de Catión/genética , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Fagocitosis/genética , Transducción de Señal
2.
Am J Pathol ; 191(10): 1732-1742, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34186073

RESUMEN

Alcohol misuse and smoking are risk factors for pneumonia, yet the impact of combined cigarette smoke and alcohol on pneumonia remains understudied. Smokers who misuse alcohol form lung malondialdehyde-acetaldehyde (MAA) protein adducts and have decreased levels of anti-MAA secretory IgA (sIgA). Transforming growth factor-ß (TGF-ß) down-regulates polymeric Ig receptor (pIgR) on mucosal epithelium, resulting in decreased sIgA transcytosis to the mucosa. It is hypothesized that MAA-adducted lung protein increases TGF-ß, preventing expression of epithelial cell pIgR and decreasing sIgA. Cigarette smoke and alcohol co-exposure on sIgA and TGF-ß in human bronchoalveolar lavage fluid and in mice instilled with MAA-adducted surfactant protein D (SPD-MAA) were studied herein. Human bronchial epithelial cells (HBECs) and mouse tracheal epithelial cells were treated with SPD-MAA and sIgA and TGF-ß was measured. Decreased sIgA and increased TGF-ß were observed in bronchoalveolar lavage from combined alcohol and smoking groups in humans and mice. CD204 (MAA receptor) knockout mice showed no changes in sIgA. SPD-MAA decreased pIgR in HBECs. Conversely, SPD-MAA stimulated TGF-ß release in both HBECs and mouse tracheal epithelial cells, but not in CD204 knockout mice. SPD-MAA stimulated TGF-ß in alveolar macrophage cells. These data show that MAA-adducted surfactant protein stimulates lung epithelial cell TGF-ß, down-regulates pIgR, and decreases sIgA transcytosis. These data provide a mechanism for the decreased levels of sIgA observed in smokers who misuse alcohol.


Asunto(s)
Acetaldehído/metabolismo , Alcoholismo/complicaciones , Epitelio/metabolismo , Inmunoglobulina A/metabolismo , Pulmón/metabolismo , Malondialdehído/metabolismo , Fumadores , Animales , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Etanol , Humanos , Macrófagos Alveolares/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Transporte de Proteínas , Proteínas/metabolismo , Receptores de Inmunoglobulina Polimérica/metabolismo , Fumar/efectos adversos , Transcitosis , Factor de Crecimiento Transformador beta/metabolismo
3.
Alcohol Clin Exp Res ; 46(6): 1023-1035, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35429004

RESUMEN

BACKGROUND: Coronavirus Disease 2019 (COVID-19) has affected every country globally, with hundreds of millions of people infected with the SARS-CoV-2 virus and over 6 million deaths to date. It is unknown how alcohol use disorder (AUD) affects the severity and mortality of COVID-19. AUD is known to increase the severity and mortality of bacterial pneumonia and the risk of developing acute respiratory distress syndrome. Our objective is to determine whether individuals with AUD have increased severity and mortality from COVID-19. METHODS: We utilized a retrospective cohort study of inpatients and outpatients from 44 centers participating in the National COVID Cohort Collaborative. All were adult COVID-19 patients with and without documented AUDs. RESULTS: We identified 25,583 COVID-19 patients with an AUD and 1,309,445 without. In unadjusted comparisons, those with AUD had higher odds of hospitalization (odds ratio [OR] 2.00, 95% confidence interval [CI] 1.94 to 2.06, p < 0.001). After adjustment for age, sex, race/ethnicity, smoking, body mass index, and comorbidities, individuals with an AUD still had higher odds of requiring hospitalization (adjusted OR [aOR] 1.51, CI 1.46 to 1.56, p < 0.001). In unadjusted comparisons, individuals with AUD had higher odds of all-cause mortality (OR 2.18, CI 2.05 to 2.31, p < 0.001). After adjustment as above, individuals with an AUD still had higher odds of all-cause mortality (aOR 1.55, CI 1.46 to 1.65, p < 0.001). CONCLUSION: This work suggests that AUD can increase the severity and mortality of COVID-19 infection. This reinforces the need for clinicians to obtain an accurate alcohol history from patients hospitalized with COVID-19. For this study, our results are limited by an inability to quantify the daily drinking habits of the participants. Studies are needed to determine the mechanisms by which AUD increases the severity and mortality of COVID-19.


Asunto(s)
Alcoholismo , COVID-19 , Adulto , Alcoholismo/epidemiología , Hospitalización , Humanos , Estudios Retrospectivos , SARS-CoV-2
4.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L180-L191, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31693392

RESUMEN

Exposure to agricultural bioaerosols can lead to chronic inflammatory lung diseases. Amphiregulin (AREG) can promote the lung repair process but can also lead to fibrotic remodeling. The objective of this study was to determine the role of AREG in altering recovery from environmental dust exposure in a murine in vivo model and in vitro using cultured human and murine lung fibroblasts. C57BL/6 mice were intranasally exposed to swine confinement facility dust extract (DE) or saline daily for 1 wk or allowed to recover for 3-7 days while being treated with an AREG-neutralizing antibody or recombinant AREG. Treatment with the anti-AREG antibody prevented resolution of DE exposure-induced airway influx of total cells, neutrophils, and macrophages and increased levels of TNF-α, IL-6, and CXCL1. Neutrophils and activated macrophages (CD11c+CD11bhi) persisted after recovery in lung tissues of anti-AREG-treated mice. In murine and human lung fibroblasts, DE induced the release of AREG and inflammatory cytokines. Fibroblast recellularization of primary human lung mesenchymal matrix scaffolds and wound closure was inhibited by DE and enhanced with recombinant AREG alone. AREG treatment rescued the DE-induced inhibitory fibroblast effects. AREG intranasal treatment for 3 days during recovery phase reduced repetitive DE-induced airway inflammatory cell influx and cytokine release. Collectively, these studies demonstrate that inhibition of AREG reduced, whereas AREG supplementation promoted, the airway inflammatory recovery response following environmental bioaerosol exposure, and AREG enhanced fibroblast function, suggesting that AREG could be targeted in agricultural workers repetitively exposed to organic dust environments to potentially prevent and/or reduce disease.


Asunto(s)
Anfirregulina/farmacología , Polvo/prevención & control , Exposición a Riesgos Ambientales/efectos adversos , Fibroblastos/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Agricultura/métodos , Animales , Células Cultivadas , Quimiocina CXCL1/metabolismo , Citocinas/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Pulmón/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
5.
Alcohol Clin Exp Res ; 44(8): 1571-1584, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32524622

RESUMEN

BACKGROUND: Alcohol use disorders (AUDs) and cigarette smoking both increase risk for the development of community-acquired pneumonia (CAP), likely through adverse effects on proximal airway mucociliary clearance and pathogen recognition. Smoking-related alterations on airway gene expression are well described, but little is known about the impact of AUDs. We measured gene expression in human airway epithelial cells (AECs), hypothesizing that AUDs would be associated with novel differences in gene expression that could alter risk for CAP. METHODS: Bronchoscopy with airway brushings was performed in participants with AUDs and controls to obtain AECs. An AUD Identification Test was used to define AUD. RNA was extracted from AECs, and mRNA expression data were collected on an Agilent micro-array. Differential expression analyses were performed on the filtered and normalized data with correction for multiple testing. Enrichment analyses were performed using clusterProfiler. RESULTS: Expression data from 19 control and 18 AUD participants were evaluated. After adjustment for smoking, AUDs were associated with significant differential expression of 520 AEC genes, including genes for ribosomal proteins and genes involved in protein folding. Enrichment analyses indicated significant differential expression of 24 pathways in AUDs, including those implicated in protein targeting to membrane and viral gene expression. Smoking-associated AEC gene expression differences mirrored previous reports, but differed from those associated with AUDs. CONCLUSIONS: AUDs have a distinct impact on AEC gene expression that may influence proximal airway function independent of smoking. Alcohol-associated alterations may influence risk for CAP through modifying key mechanisms important in protecting proximal airway integrity.


Asunto(s)
Alcoholismo/genética , Células Epiteliales/metabolismo , Expresión Génica , ARN Mensajero/metabolismo , Mucosa Respiratoria/citología , Adulto , Alcoholismo/metabolismo , Broncoscopía , Estudios de Casos y Controles , Fumar Cigarrillos/genética , Fumar Cigarrillos/metabolismo , Infecciones Comunitarias Adquiridas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neumonía , Factores de Riesgo , Transcriptoma
6.
Am J Physiol Lung Cell Mol Physiol ; 316(2): L334-L347, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30358438

RESUMEN

Inflammation from airborne microbes can overwhelm compensatory mucociliary clearance mechanisms, leading to mucous cell metaplasia. Toll-like receptor (TLR) activation via myeloid differentiation factor 88 (MyD88) signaling is central to pathogen responses. We have previously shown that agricultural organic dust extract (ODE), with abundant microbial component diversity, activates TLR-induced airway inflammation. With the use of an established model, C57BL/6J wild-type (WT) and global MyD88 knockout (KO) mice were treated with intranasal inhalation of ODE or saline, daily for 1 wk. ODE primarily increased mucin (Muc)5ac levels relative to Muc5b. Compared with ODE-challenged WT mice, ODE-challenged, MyD88-deficient mice demonstrated significantly increased Muc5ac immunostaining, protein levels by immunoblot, and expression by quantitative PCR. The enhanced Muc5ac levels in MyD88-deficient mice were not explained by differences in the differentiation program of airway secretory cells in naïve mice. Increased Muc5ac levels in MyD88-deficient mice were also not explained by augmented inflammation, IL-17A, or neutrophil elastase levels. Furthermore, the enhanced airway mucins in the MyD88-deficient mice were not due to defective secretion, as the mucin secretory capacity of MyD88-KO mice remained intact. Finally, ODE-induced Muc5ac levels were enhanced in MyD88-deficient airway epithelial cells in vitro. In conclusion, MyD88 deficiency enhances airway mucous cell metaplasia under environments with high TLR activation.


Asunto(s)
Mediadores de Inflamación/metabolismo , Pulmón/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Receptores Toll-Like/metabolismo , Animales , Citocinas/metabolismo , Exposición por Inhalación , Ratones Endogámicos C57BL , Mucina 5AC/genética
7.
Aging Clin Exp Res ; 31(9): 1185-1193, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30402800

RESUMEN

BACKGROUND: Sepsis is more common in the elderly. TNF⍺ is recognized as an important mediator in sepsis and Toll-like receptors (TLRs) play an important role in initiating signaling cascades to produce TNF⍺. Little is known about how innate immunity is altered in healthy human aging that predisposes to sepsis. AIMS AND METHODS: We tested the hypothesis that aging dysregulates the innate immune response to TLR 2 and 4 ligands. We performed whole blood assays on 554 healthy subjects aged 40-80 years. TNFα production was measured at baseline and after stimulation with the TLR2 agonists: peptidoglycan, lipoteichoic acid, Pam3CysK, Zymosan A and the TLR4 agonist lipopolysaccharide (LPS). In a subset of subjects (n = 250), we measured Toll-like receptor (TLR) 2, 4 and MyD88 expression using real-time PCR. RESULTS AND DISCUSSION: We measured a 2.5% increase per year in basal secretion of TNFα with aging (n = 554 p = 0.02). Likewise, TNFα secretion was increased with aging after stimulation with peptidoglycan (1.3% increase/year; p = 0.0005) and zymosan A (1.1% increase/year p = 0.03). We also examined the difference between baseline and stimulated TNFα for each individual. We found that the increase was driven by the elevated baseline levels. In fact, there was a diminished stimulated response to LPS (1.9% decrease/year; p = 0.05), lipoteichoic acid (2.1% decrease/year p = 0.03), and Pam3CysK (2.6% decrease/year p = 0.0007). There were no differences in TLR or MyD88 mRNA expression with aging, however, there was an inverse relationship between TLR expression and stimulated TNFα production. CONCLUSIONS: With aging, circulating leukocytes produce high levels of TNFα at baseline and have inadequate responses to TLR2 and TLR4 agonists. These defects likely contribute to the increased susceptibility to sepsis in older adults.


Asunto(s)
Inmunidad Innata , Sepsis/inmunología , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/fisiología , Humanos , Persona de Mediana Edad , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L882-L890, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30211654

RESUMEN

Older people are four times more likely to develop pneumonia than younger people. As we age, many components of pulmonary innate immunity are impaired, including slowing of mucociliary clearance. Ciliary beat frequency (CBF) is a major determinant of mucociliary clearance, and it slows as we age. We hypothesized that CBF is slowed in aging because of increased oxidative stress, which activates PKCε signaling. We pharmacologically inhibited PKCε in ex vivo mouse models of aging. We measured a slowing of CBF with aging that was reversed with inhibition using the novel PKC inhibitor, Ro-31-8220, as well as the PKCε inhibitor, PKCe141. Inhibition of PKCε using siRNA in mouse trachea also returned CBF to normal. In addition, antioxidants decrease PKCε activity and speed cilia. We also aged wild-type and PKCε KO mice and measured CBF. The PKCε KO mice were spared from the CBF slowing of aging. Using human airway epithelial cells from younger and older donors at air-liquid interface (ALI), we inhibited PKCε with siRNA. We measured a slowing of CBF with aging that was reversed with siRNA inhibition of PKCε. In addition, we measured bead clearance speeds in human ALI, which demonstrated a decrease in bead velocity with aging and a return to baseline after inhibition of PKCε. In summary, in human and mouse models, aging is associated with increased oxidant stress, which activates PKCε and slows CBF.


Asunto(s)
Envejecimiento/metabolismo , Cilios/metabolismo , Estrés Oxidativo/fisiología , Proteína Quinasa C-epsilon/metabolismo , Envejecimiento/fisiología , Animales , Línea Celular , Cilios/fisiología , Células Epiteliales/metabolismo , Células Epiteliales/fisiología , Femenino , Humanos , Pulmón/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Depuración Mucociliar/fisiología , Neumonía/metabolismo , Neumonía/fisiopatología , Tráquea/metabolismo , Tráquea/fisiopatología
9.
Am J Physiol Lung Cell Mol Physiol ; 314(3): L421-L431, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29097425

RESUMEN

Injurious dust exposures in the agricultural workplace involve the release of inflammatory mediators and activation of epidermal growth factor receptor (EGFR) in the respiratory epithelium. Amphiregulin (AREG), an EGFR ligand, mediates tissue repair and wound healing in the lung epithelium. Omega-3 fatty acids such as docosahexaenoic acid (DHA) are also known modulators of repair and resolution of inflammatory injury. This study investigated how AREG, DHA, and EGFR modulate lung repair processes following dust-induced injury. Primary human bronchial epithelial (BEC) and BEAS-2B cells were treated with an aqueous extract of swine confinement facility dust (DE) in the presence of DHA and AREG or EGFR inhibitors. Mice were exposed to DE intranasally with or without EGFR inhibition and DHA. Using a decellularized lung scaffolding tissue repair model, BEC recolonization of human lung scaffolds was analyzed in the context of DE, DHA, and AREG treatments. Through these investigations, we identified an important role for AREG in mediating BEC repair processes. DE-induced AREG release from BEC, and DHA treatment following DE exposure, enhanced this release. Both DHA and AREG also enhanced BEC repair capacities and rescued DE-induced recellularization deficits. In vivo, DHA treatment enhanced AREG production following DE exposure, whereas EGFR inhibitor-treated mice exhibited reduced AREG in their lung homogenates. These data indicate a role for AREG in the process of tissue repair after inflammatory lung injury caused by environmental dust exposure and implicate a role for DHA in regulating AREG-mediated repair signaling in BEC.


Asunto(s)
Anfirregulina/metabolismo , Bronquios/citología , Ácidos Docosahexaenoicos/farmacología , Polvo/análisis , Exposición a Riesgos Ambientales/efectos adversos , Células Epiteliales/citología , Lesión Pulmonar/prevención & control , Animales , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Receptores ErbB/metabolismo , Humanos , Lesión Pulmonar/etiología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Porcinos
10.
Inhal Toxicol ; 30(3): 133-139, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29793367

RESUMEN

OBJECTIVE: Workers exposed to dusts from concentrated animal feeding operations have a high prevalence of pulmonary diseases. These exposures lead to chronic inflammation and aberrant airway remodeling. Previous work shows that activating cAMP-dependent protein kinase (PKA) enhances airway epithelial wound repair while activating protein kinase C (PKC) inhibits wound repair. Hog barn dust extracts slow cell migration and wound repair via a PKC-dependent mechanism. Further, blocking nitric oxide (NO) production in bronchial epithelial cells prevents PKA activation. We hypothesized that blocking an endogenous NO inhibitor, asymmetric dimethylarginine, by overexpressing dimethylarginine dimethylaminohydrolase mitigates the effects of hog dust extract on airway epithelial would repair. MATERIALS/METHODS: We cultured primary tracheal epithelial cells in monolayers from both wild-type (WT) and dimethylarginine dimethylaminohydrolase overexpressing C57Bl/6 (DDAH1 transgenic) mice and measured wound repair using the electric cell impedance sensing system. RESULTS: Wound closure in epithelial cells from WT mice occurred within 24 h in vitro. In contrast, treatment of the WT cell monolayers with 5% hog dust extract prevented significant NO-stimulated wound closure. In cells from DDAH1 transgenic mice, control wounds were repaired up to 8 h earlier than seen in WT mice. A significant enhancement of wound repair was observed in DDAH cells compared to WT cells treated with hog dust extract for 24 h. Likewise, cells from DDAH1 transgenic mice demonstrated increased NO and PKA activity and decreased hog dust extract-stimulated PKC. DISCUSSION/CONCLUSION: Preserving the NO signal through endogenous inhibition of asymmetric dimethylarginine enhances wound repair even in the presence of dust exposure.


Asunto(s)
Amidohidrolasas/genética , Crianza de Animales Domésticos , Polvo , Células Epiteliales/fisiología , Cicatrización de Heridas , Animales , Arginina/análogos & derivados , Arginina/metabolismo , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Óxido Nítrico/metabolismo , Proteína Quinasa C/metabolismo , Tráquea/citología
11.
Curr Opin Pulm Med ; 22(2): 144-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26761627

RESUMEN

PURPOSE OF REVIEW: Occupational exposures in the agricultural industry are associated with numerous lung diseases, including chronic obstructive pulmonary disease, asthma, hypersensitivity pneumonitis, lung cancer, and interstitial lung diseases. Efforts are ongoing to ascertain contributing factors to these negative respiratory outcomes and improve monitoring of environmental factors leading to disease. In this review, recently published studies investigating the deleterious effects of occupational exposures in the agricultural industry are discussed. RECENT FINDINGS: Occupational exposures to numerous agricultural environment aerosols, including pesticides, fungi, and bacteria are associated with impaired respiratory function and disease. Increases in certain farming practices, including mushroom and greenhouse farming, present new occupational exposure concerns. Improved detection methods may provide opportunities to better monitor safe exposure levels to known lung irritants. SUMMARY: In the agricultural industry, occupational exposures to organic and inorganic aerosols lead to increased risk for lung disease among workers. Increased awareness of respiratory risks and improved monitoring of agricultural environments are necessary to limit pulmonary health risks to exposed populations.


Asunto(s)
Agricultura , Enfermedades Pulmonares/inducido químicamente , Aerosoles , Contaminantes Ocupacionales del Aire/toxicidad , Animales , Humanos , Exposición Profesional
12.
Crit Care Med ; 43(6): 1157-64, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25756410

RESUMEN

OBJECTIVE: This report will describe the preparations for and the provision of care of two patients with Ebola virus disease in the biocontainment unit at the University of Nebraska Medical Center. DATA SOURCES: Patient medical records. STUDY SELECTION: Not applicable. DATA EXTRACTION: Not applicable. DATA SYNTHESIS: Not applicable. CONCLUSIONS: Safe and effective care of patients with Ebola virus disease requires significant communication and planning. Adherence to a predetermined isolation protocol is essential, including proper donning and doffing of personal protective equipment. Location of the patient care area and the logistics of laboratory testing, diagnostic imaging, and the removal of waste must be considered. Patients with Ebola virus disease are often dehydrated and need adequate vascular access for fluid resuscitation, nutrition, and phlebotomy for laboratory sampling. Advanced planning for acute life-threatening events and code status must be considered. Intensivist scheduling should account for the significant amount of time required for the care of patients with Ebola virus disease. With appropriate precautions and resources, designated hospitals in the United States can safely provide care for patients with Ebola virus disease.


Asunto(s)
Protocolos Clínicos , Cuidados Críticos/organización & administración , Fiebre Hemorrágica Ebola/fisiopatología , Fiebre Hemorrágica Ebola/terapia , Equipos de Seguridad , Manejo de la Vía Aérea , Comunicación , Humanos , Aislamiento de Pacientes , Estados Unidos , Dispositivos de Acceso Vascular
13.
Alcohol Clin Exp Res ; 39(9): 1691-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26208141

RESUMEN

BACKGROUND: The lung has a highly regulated system of innate immunity to protect itself from inhaled microbes and toxins. The first line of defense is mucociliary clearance, but if invaders overcome this, inflammatory pathways are activated. Toll-like receptors (TLRs) are expressed on the airway epithelium. Their signaling initiates the inflammatory cascade and leads to production of inflammatory cytokines such as interleukin (IL)-6 and IL-8. We hypothesized that airway epithelial insults, including heavy alcohol intake or smoking, would alter the expression of TLRs on the airway epithelium. METHODS: Bronchoscopy with bronchoalveolar lavage and brushings of the airway epithelium was performed in otherwise healthy subjects who had normal chest radiographs and spirometry. A history of alcohol use disorders (AUDs) was ascertained using the Alcohol Use Disorders Identification Test (AUDIT), and a history of cigarette smoking was also obtained. Age, gender, and nutritional status in all groups were similar. We used real-time polymerase chain reaction (PCR) to quantitate TLR1 to 9 and enzyme-linked immune assay to measure tumor necrosis factor-α, IL-6, and IL-8. RESULTS: Airway brushings were obtained from 26 nonsmoking/non-AUD subjects, 28 smoking/non-AUD subjects, 36 smoking/AUD subjects, and 17 nonsmoking/AUD subjects. We found that TLR2 is up-regulated in AUD subjects, compared to nonsmoking/non-AUD subjects, and correlated with their AUDIT scores. We also measured a decrease in TLR4 expression in AUD subjects that correlated with AUDIT score. IL-6 and IL-8 were also increased in bronchial washings from AUD subjects. CONCLUSIONS: We have previously demonstrated in normal human bronchial epithelial cells that in vitro alcohol exposure up-regulates TLR2 through a NO/cGMP/PKG-dependent pathway, resulting in up-regulation of inflammatory cytokine production after Gram-positive bacterial product stimulation. Our current translational study confirms that TLR2 is also up-regulated in humans with AUDs.


Asunto(s)
Trastornos Relacionados con Alcohol/metabolismo , Citocinas/biosíntesis , Mediadores de Inflamación/metabolismo , Mucosa Respiratoria/metabolismo , Receptor Toll-Like 2/biosíntesis , Receptor Toll-Like 4/biosíntesis , Adulto , Trastornos Relacionados con Alcohol/diagnóstico , Trastornos Relacionados con Alcohol/genética , Células Cultivadas , Estudios de Cohortes , Citocinas/genética , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Mucosa Respiratoria/patología , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética
14.
J Toxicol Environ Health A ; 78(19): 1201-16, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26436836

RESUMEN

Agricultural workers have high rates of airway and skeletal health disease. Studies recently demonstrated that inhaled agricultural organic dust extract (ODE)-induced airway injury is associated with bone deterioration in an animal model. However, the effect of age in governing these responses to organic dusts is unclear, but might be important in future approaches. Young (7-9 wk) and older (12-14,o) male C57BL/6 mice received intranasal (i.n.) inhalation exposure to ODE from swine confinement facilities once or daily for 3 wk. Acute ODE-induced neutrophil influx and cytokine and chemokine (tumor necrosis factor [TNF]-α, interleukin [IL]-6, keratinocyte chemoattractant [CXCL1], macrophage inflammatory protein-2 [CXCL2]) airway production were reduced in older compared to young mice. Repetitive ODE treatment, however, increased lymphocyte recruitment and alveolar compartment histopathologic inflammatory changes in older mice. Whole lung cell infiltrate analysis revealed that young, but not older, mice repetitively treated with ODE demonstrated an elevated CD4:CD8 lymphocyte response. Acute inhalant ODE exposure resulted in a 4-fold and 1.5-fold rise in blood neutrophils in young and older mice, respectively. Serum IL-6 and CXCL1 levels were elevated in young and older mice i.n. exposed once to ODE, with increased CXCL1 levels in younger compared to older mice. Although older mice displayed reduced bone measurements compared to younger mice, younger rodents demonstrated ODE-induced decrease in bone mineral density, bone volume, and bone microarchitecture quality as determined by computed tomography (CT) analysis. Collectively, age impacts the airway injury and systemic inflammatory and bone loss response to inhalant ODE, suggesting an altered and enhanced immunologic response in younger as compared to older counterparts.


Asunto(s)
Huesos/efectos de los fármacos , Polvo , Exposición por Inhalación/efectos adversos , Neumonía/inducido químicamente , Administración Intranasal , Factores de Edad , Animales , Densidad Ósea/efectos de los fármacos , Quimiocina CXCL1/sangre , Quimiocina CXCL2/sangre , Interleucina-6/sangre , Activación de Linfocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/sangre
15.
Am J Physiol Lung Cell Mol Physiol ; 306(9): L829-39, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24610937

RESUMEN

Nonmotile primary cilia are recognized as important sensory organelles during development and normal biological functioning. For example, recent work demonstrates that transcriptional regulators of the sonic hedgehog signaling pathway localize to primary cilia and participate in sensing and transducing signals regarding the cellular environment. In contrast, motile cilia are traditionally viewed as mechanical machinery, vital for the movement of solutes and clearance of bacteria and debris, but not participants in cellular sensing and signaling mechanisms. Recently, motile cilia were found to harbor receptors responsible for sensing and responding to environmental stimuli. However, no transcription factors are known to be regulated by cilia localization as a sensing mechanism in vertebrates. Using a mouse model of organic dust-induced airway inflammation, we found that the transcription factor serum response factor (SRF) localizes to motile cilia of airway epithelial cells and alters its localization in response to inflammatory stimuli. Furthermore, inhibition of SRF signaling using the small molecule CCG-1423 reduces organic dust-induced IL-8 release from bronchial epithelial cells and stimulates cilia beat frequency in ciliated mouse tracheal epithelial cells. Immunohistochemical analyses reveal that SRF localizes to the cilia of mouse brain ependymal and ovarian epithelial cells as well. These data reveal a novel mechanism by which a transcription factor localizes to motile cilia and modulates cell activities including cilia motility and inflammation response. These data challenge current dogma regarding motile cilia functioning and may lead to significant contributions in understanding motile ciliary signaling dynamics, as well as mechanisms involving SRF-mediated responses to inflammation and injury.


Asunto(s)
Cilios/metabolismo , Polvo , Monitoreo del Ambiente , Lesión Pulmonar/etiología , Lesión Pulmonar/metabolismo , Factor de Respuesta Sérica/metabolismo , Tráquea/metabolismo , Adulto , Anciano , Anilidas/farmacología , Animales , Benzamidas/farmacología , Western Blotting , Bronquios/citología , Bronquios/metabolismo , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Humanos , Técnicas para Inmunoenzimas , Interleucina-8/metabolismo , Lesión Pulmonar/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Neumonía/etiología , Neumonía/metabolismo , Neumonía/patología , Tráquea/citología , Proteína de Unión al GTP rhoA/antagonistas & inhibidores
16.
Am J Physiol Lung Cell Mol Physiol ; 307(8): L643-51, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25150062

RESUMEN

Lung injury caused by inhalation of dust from swine-concentrated animal-feeding operations (CAFO) involves the release of inflammatory cytokine interleukin 8 (IL-8), which is mediated by protein kinase C-ε (PKC-ε) in airway epithelial cells. Once activated by CAFO dust, PKC-ε is responsible for slowing cilia beating and reducing cell migration for wound repair. Conversely, the cAMP-dependent protein kinase (PKA) stimulates contrasting effects, such as increased cilia beating and an acceleration of cell migration for wound repair. We hypothesized that a bidirectional mechanism involving PKA and PKC regulates epithelial airway inflammatory responses. To test this hypothesis, primary human bronchial epithelial cells and BEAS-2B cells were treated with hog dust extract (HDE) in the presence or absence of cAMP. PKC-ε activity was significantly reduced in cells that were pretreated for 1 h with 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) before exposure to HDE (P < 0.05). HDE-induced IL-6, and IL-8 release was significantly lower in cells that were pretreated with 8-Br-cAMP (P < 0.05). To exclude exchange protein activated by cAMP (EPAC) involvement, cells were pretreated with either 8-Br-cAMP or 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2Me-cAMP) (EPAC agonist). 8-CPT-2Me-cAMP did not activate PKA and did not reduce HDE-stimulated IL-6 release. In contrast, 8-Br-cAMP decreased HDE-stimulated tumor necrosis factor (TNF)-α-converting enzyme (TACE; ADAM-17) activity and subsequent TNF-α release (P < 0.001). 8-Br-cAMP also blocked HDE-stimulated IL-6 and keratinocyte-derived chemokine release in precision-cut mouse lung slices (P < 0.05). These data show bidirectional regulation of PKC-ε via a PKA-mediated inhibition of TACE activity resulting in reduced PKC-ε-mediated release of IL-6 and IL-8.


Asunto(s)
Bronquios/inmunología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Polvo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Proteína Quinasa C-epsilon/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Proteínas ADAM/metabolismo , Proteína ADAM17 , Acetilcisteína/análogos & derivados , Acetilcisteína/metabolismo , Alimentación Animal , Animales , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Eritromicina/análogos & derivados , Eritromicina/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Porcinos , Factor de Necrosis Tumoral alfa/metabolismo
17.
bioRxiv ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38405874

RESUMEN

In asthma, the airway epithelium is hyperplastic, hypertrophied, and lined with numerous large MUC5AC-containing goblet cells (GC). Furthermore, the normal epithelial architecture is disorganized with numerous, what we here describe as, ectopic goblet cells (eGC) deep within the thickened epithelial layer disconnected from the lumenal surface. mTOR is a highly conserved pathway that regulates cell size and proliferation. We hypothesized that the balance between mTOR and autophagy signaling regulates key features of the asthma epithelial layer. Airway histological sections from subjects with asthma had increased frequency of eGC and increased levels of mTOR phosphorylation target-Ribosomal S6. Using human airway epithelial cells (hAECs) with IL-13 stimulation and timed withdrawal to stimulate resolution, we found that multiple key downstream phosphorylation targets downstream from the mTOR complex were increased during early IL-13-mediated mucous metaplasia, and then significantly declined during resolution. The IL-13-mediated changes in mTOR signaling were paralleled by morphologic changes with airway epithelial hypertrophy, hyperplasia, and frequency of eGC. We then examined the relationship between mTOR and autophagy using mice deficient in autophagy protein Atg16L1. Despite having increased cytoplasmic mucins, mouse AECs from Atg16L1 deficient mice had no significant difference in mTOR downstream signaling. mTOR inhibition with rapamycin led to a loss of IL-13-mediated epithelial hypertrophy, hyperplasia, ectopic GC distribution, and reduction in cytoplasmic MUC5AC levels. mTOR inhibition was also associated with a reduction in aberrant IL-13-mediated hAEC proliferation and migration. Our findings demonstrate that mTOR signaling is associated with mucous metaplasia and is crucial to the disorganized airway epithelial structure and function characteristic of muco-obstructive airway diseases such as asthma. Graphical Abstract Key Concepts: The airway epithelium in asthma is disorganized and characterized by cellular proliferation, aberrant migration, and goblet cell mucous metaplasia.mTOR signaling is a dynamic process during IL-13-mediated mucous metaplasia, increasing with IL-13 stimulation and declining during resolution.mTOR signaling is strongly increased in the asthmatic airway epithelium.mTOR signaling is associated with the development of key features of the metaplastic airway epithelium including cell proliferation and ectopic distribution of goblet cells and aberrant cellular migration.Inhibition of mTOR leads to decreased epithelial hypertrophy, reduced ectopic goblet cells, and cellular migration.

18.
Int Immunopharmacol ; 127: 111330, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38086271

RESUMEN

OBJECTIVES: Interstitial lung disease (ILD) is associated with significant mortality in rheumatoid arthritis (RA) patients with key cellular players remaining largely unknown. This study aimed to characterize inflammatory and myeloid derived suppressor cell (MDSC) subpopulations in RA-ILD as compared to RA, idiopathic pulmonary fibrosis (IPF) without autoimmunity, and controls. METHODS: Peripheral blood was collected from patients with RA, RA-ILD, IPF, and controls (N = 60, 15/cohort). Myeloid cell subpopulations were identified phenotypically by flow cytometry using the following markers:CD45,CD3,CD19,CD56,CD11b,HLA-DR,CD14,CD16,CD15,CD125,CD33. Functionality of subsets were identified with intracellular arginase-1 (Arg-1) and inducible nitric oxide synthase (iNOS) expression. RESULTS: There was increased intermediate (CD14++CD16+) and nonclassical (CD14+/-CD16++) and decreased classical (CD14++CD16-) monocytes in RA, RA-ILD, and IPF vs. control. Intermediate monocytes were higher and classical monocytes were lower in RA-ILD vs. RA but not IPF. Monocytic (m)MDSCs were higher in RA-ILD vs. control and RA but not IPF. Granulocytic (g)MDSCs did not significantly differ. In contrast, neutrophils were increased in IPF and RA-ILD patients with elevated expression of Arg-1 sharing similar dimensional clustering pattern. Eosinophils were increased in RA-ILD vs. controls, RA and IPF. Across cohorts, iNOS was decreased in intermediate/nonclassical monocytes but increased in mMDSCs vs. classical monocytes. In RA-ILD, iNOS positive mMDSCs were increased versus classic monocytes. CONCLUSIONS: Myeloid cell subpopulations are significantly modulated in RA-ILD patients with expansion of CD16+ monocytes, mMDSCs, and neutrophils, a phenotypic profile more aligned with IPF than other RA patients. Eosinophil expansion was unique to RA-ILD, potentially facilitating disease pathogenesis and providing a future therapeutic target.


Asunto(s)
Artritis Reumatoide , Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Humanos , Monocitos , Células Mieloides
19.
Am J Pathol ; 181(2): 431-40, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22677421

RESUMEN

Alcohol use disorders are associated with increased lung infections and exacerbations of chronic lung diseases. Whereas the effects of cigarette smoke are well recognized, the interplay of smoke and alcohol in modulating lung diseases is not clear. Because innate lung defense is mechanically maintained by airway cilia action and protein kinase C (PKC)-activating agents slow ciliary beat frequency (CBF), we hypothesized that the combination of smoke and alcohol would decrease CBF in a PKC-dependent manner. Primary ciliated bronchial epithelial cells were exposed to 5% cigarette smoke extract plus100 mmol/L ethanol for up to 24 hours and assayed for CBF and PKCε. Smoke and alcohol co-exposure activated PKCε by 1 hour and decreased both CBF and total number of beating cilia by 6 hours. A specific activator of PKCε, DCP-LA, slowed CBF after maximal PKCε activation. Interestingly, activation of PKCε by smoke and alcohol was only observed in ciliated cells, not basal bronchial epithelium. In precision-cut mouse lung slices treated with smoke and alcohol, PKCε activation preceded CBF slowing. Correspondingly, increased PKCε activity and cilia slowing were only observed in mice co-exposed to smoke and alcohol, regardless of the sequence of the combination exposure. No decreases in CBF were observed in PKCε knockout mice co-exposed to smoke and alcohol. These data identify PKCε as a key regulator of cilia slowing in response to combined smoke and alcohol-induced lung injury.


Asunto(s)
Bronquios/patología , Cilios/metabolismo , Exposición a Riesgos Ambientales , Células Epiteliales/enzimología , Etanol/efectos adversos , Proteína Quinasa C-epsilon/metabolismo , Fumar/efectos adversos , Animales , Axonema/enzimología , Biocatálisis , Bovinos , Activación Enzimática , Células Epiteliales/patología , Técnicas In Vitro , Ratones , Ratones Noqueados , Transporte de Proteínas
20.
Acad Med ; 98(5): 636-643, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36608351

RESUMEN

PURPOSE: Education debt, poor financial literacy, and a late start to retirement savings can cause financial stress among physicians. This systematic review identifies methods for curriculum development, methods for curriculum delivery, and outcome measures to evaluate the effectiveness of personal financial wellness curricula for medical students, residents, and fellows. METHOD: The authors searched the Embase, MEDLINE (via EBSCO), Scopus, Education Resources Information Center (via EBSCO), and Cochrane Library databases and MedEdPORTAL (via PubMed) on July 28, 2022. Studies must have reported the outcome of at least 1 postcourse assessment to be included. RESULTS: Of the 1,996 unique citations identified, 13 studies met the inclusion criteria. Three curricula (23.1%) were designed for medical students, 8 (61.5%) for residents, 1 (7.7%) for internal medicine fellows, and 1 (7.7%) for obstetrics-gynecology residents and fellows. The most frequently discussed personal finance topics included student loans, investment options, disability insurance, life insurance, retirement savings, budgeting, debt management, and general personal finance. A median (interquartile range) of 3.5 (1.4-7.0) hours was spent on personal finance topics. Eleven curricula (85.6%) relied on physicians to deliver the content. Four studies (30.8%) reported precourse and postcourse financial literacy evaluations, each showing improved financial literacy after the course. Four studies (30.8%) assessed actual or planned financial behavior changes, each credited with encouraging or assisting with financial behavioral changes. One study (7.7%) assessed participants' well-being using the Expanded Well-Being Index, which showed an improvement after the course. CONCLUSIONS: Given the impact educational debt and other financial stressors can have on the wellness of medical trainees, institutions should consider investments in teaching financial literacy. Future studies should report more concrete outcome measures, including financial behavior change and validated measures of wellness.


Asunto(s)
Educación Médica , Ginecología , Internado y Residencia , Humanos , Educación Médica/métodos , Ginecología/educación , Curriculum , Medicina Interna/educación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA