Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Reprod Biol Endocrinol ; 21(1): 65, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464405

RESUMEN

BACKGROUND: Preeclampsia is a severe complication of pregnancy which is attributed to placental dysfunction. The retrotransposon, Paternal Expressed Gene 10 (PEG10) harbours critical placental functions pertaining to placental trophoblast cells. Limited evidence exists on whether PEG10 is involved in preeclampsia pathogenesis. This study characterised the expression and regulation of PEG10 in placentas from patients with early-onset preeclampsia compared to gestation-matched controls. METHODS: PEG10 expression was measured in plasma and placentas collected from patients with early-onset preeclampsia (< 34 weeks') and gestation-matched controls using ELISA (protein) and RT-qPCR (mRNA). First-trimester human trophoblast stem cells (hTSCs) were used for in vitro studies. PEG10 expression was measured during hTSC differentiation and hTSC exposure to hypoxia (1% O2) and inflammatory cytokines (IL-6 and TNFα) using RT-qPCR. Functional studies used PEG10 siRNA to measure the effect of reduced PEG10 on canonical TGF-[Formula: see text] signalling and proliferation using luciferase and xCELLigence assays, respectively. RESULTS: PEG10 mRNA expression was significantly reduced in placentas from patients with early-onset preeclampsia (< 34 weeks' gestation) relative to controls (p = 0.04, n = 78 vs n = 18 controls). PEG10 protein expression was also reduced in preeclamptic placentas (p = 0.03, n = 5 vs n = 5 controls, blinded assessment of immunohistochemical staining), but neither PEG10 mRNA nor protein could be detected in maternal circulation. PEG10 was most highly expressed in hTSCs, and its expression was reduced as hTSCs differentiated into syncytiotrophoblasts (p < 0.0001) and extravillous trophoblasts (p < 0.001). Trophoblast differentiation was not altered when hTSCs were treated with PEG10 siRNA (n = 5 vs n = 5 controls). PEG10 was significantly reduced in hTSCs exposed to hypoxia (p < 0.01). PEG10 was also reduced in hTSCs treated with the inflammatory cytokine TNF [Formula: see text] (p < 0.01), but not IL-6. PEG10 knocked down (siRNA) in hTSCs showed reduced activation of the canonical TGF-ß signalling effector, the SMAD binding element (p < 0.05) relative to controls. PEG10 knockdown in hTSCs however was not associated with any significant alterations in proliferation. CONCLUSIONS: Placental PEG10 is reduced in patients with early-onset preeclampsia. In vitro studies suggest that hypoxia and inflammation may contribute to PEG10 downregulation. Reduced PEG10 alters canonical TGF-[Formula: see text] signalling, and thus may be involved in trophoblast dysfunction associated with this pathway.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Humanos , Femenino , Placenta/metabolismo , Preeclampsia/diagnóstico , Preeclampsia/genética , Trofoblastos/metabolismo , Citocinas/genética , Citocinas/metabolismo , ARN Interferente Pequeño , ARN Mensajero/metabolismo , Hipoxia , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo
2.
Placenta ; 140: 39-46, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37531748

RESUMEN

BACKGROUND: Mucins are a family of proteins that protect the epithelium. A particular type of mucin, MUC15 is highly expressed in the placenta. This study aimed to characterise MUC15 in preeclampsia and investigate its role in placental stem cell biology. METHODS: MUC15 mRNA and protein were measured in placentas from patients with early onset (<34 weeks' gestation) preeclampsia. Circulating serum MUC15 was measured via ELISA. MUC15 was localised in the placenta using in situ hybridisation. MUC15 mRNA expression was measured across differentiation of human trophoblast stem cells (hTSCs) to syncytiotrophoblast and extravillous trophoblasts. MUC15 was measured after syncytialised hTSCs were cultured in hypoxic (1% O2) and proinflammatory (TNF α, IL-6) conditions. MUC15 secretion was assessed when syncytialised hTSCs were treated with brefeldin A (impairs protein trafficking) and batimastat (inhibits matrix metalloproteinases). RESULTS: MUC15 protein was significantly increased in the placenta (P = 0.0003, n = 32 vs n = 20 controls) and serum (P = 0.016, n = 32 vs n = 22 controls) of patients with preeclampsia, whilst MUC15 mRNA remained unchanged (n = 61 vs n = 18 controls). MUC15 mRNA (P = 0.005) and protein secretion (P = 0.006) increased following differentiation to syncytiotrophoblast cells. In situ hybridisation confirmed MUC15 localised to the syncytiotrophoblast cell within the placenta. Neither hypoxic or inflammatory conditions changed MUC15 mRNA expression or secretion. Brefeldin A treated hTSCs did not alter MUC15 secretion, whilst batimastat reduced MUC15 secretion (P = 0.044). CONCLUSIONS: MUC15 is increased in early onset preeclampsia and is cleaved by matrix metalloproteinases. Increased MUC15 may reflect a protective mechanism associated with placental dysfunction. Further research will aid in confirming this.


Asunto(s)
Placenta , Preeclampsia , Embarazo , Humanos , Femenino , Placenta/metabolismo , Mucinas/metabolismo , Preeclampsia/metabolismo , Brefeldino A/metabolismo , Trofoblastos/metabolismo , ARN Mensajero/metabolismo , Metaloproteinasas de la Matriz/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA