Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Annu Rev Phys Chem ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38382566

RESUMEN

Cell membranes are incredibly complex environments containing hundreds of components. Despite substantial advances in the past decade, fundamental questions related to lipid-lipid interactions and heterogeneity persist. This review explores the complexity of lipid membranes, showcasing recent advances in vibrational spectroscopy to characterize the structure, dynamics, and interactions at the membrane interface. We include an overview of modern techniques such as surface-enhanced infrared spectroscopy as a steady-state technique with single-bilayer sensitivity, two-dimensional sum-frequency generation spectroscopy, and two-dimensional infrared spectroscopy to measure time-evolving structures and dynamics with femtosecond time resolution. Furthermore, we discuss the potential of multiscale molecular dynamics (MD) simulations, focusing on recently developed simulation algorithms, which have emerged as a powerful approach to interpret complex spectra. We highlight the ongoing challenges in studying heterogeneous environments in multicomponent membranes via current vibrational spectroscopic techniques and MD simulations. Overall, this review provides an up-to-date comprehensive overview of the powerful combination of vibrational spectroscopy and simulations, which has great potential to illuminate lipid-lipid, lipid-protein, and lipid-water interactions in the intricate conformational landscape of cell membranes. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 75 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2.
J Chem Phys ; 160(11)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38488086

RESUMEN

Thiocyanates, nitriles, and azides represent a versatile set of vibrational probes to measure the structure and dynamics in biological systems. The probes are minimally perturbative, the nitrile stretching mode appears in an otherwise uncongested spectral region, and the spectra report on the local environment around the probe. Nitrile frequencies and lineshapes, however, are difficult to interpret, and theoretical models that connect local environments with vibrational frequencies are often necessary. However, the development of both more accurate and intuitive models remains a challenge for the community. The present work provides an experimentally consistent collection of experimental measurements, including IR absorption and ultrafast two-dimensional infrared (2D IR) spectra, to serve as a benchmark in the development of future models. Specifically, we catalog spectra of the nitrile stretching mode of methyl thiocyanate (MeSCN) in fourteen different solvents, including non-polar, polar, and protic solvents. Absorption spectra indicate that π-interactions may be responsible for the line shape differences observed between aromatic and aliphatic alcohols. We also demonstrate that a recent Kamlet-Taft formulation describes the center frequency MeSCN. Furthermore, we report cryogenic infrared spectra that may lead to insights into the peak asymmetry in aprotic solvents. 2D IR spectra measured in protic solvents serve to connect hydrogen bonding with static inhomogeneity. We expect that these insights, along with the publicly available dataset, will be useful to continue advancing future models capable of quantitatively describing the relation between local environments, line shapes, and dynamics in nitrile probes.

3.
Biophys J ; 2023 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-38142298

RESUMEN

Cell signaling is an important process involving complex interactions between lipids and proteins. The myristoylated alanine-rich C-kinase substrate (MARCKS) has been established as a key signaling regulator, serving a range of biological roles. Its effector domain (ED), which anchors the protein to the plasma membrane, induces domain formation in membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylserine (PS). The mechanisms governing the MARCKS-ED binding to membranes remain elusive. Here, we investigate the composition-dependent affinity and MARCKS-ED-binding-induced changes in interfacial environments using two-dimensional infrared spectroscopy and fluorescence anisotropy. Both negatively charged lipids facilitate the MARCKS-ED binding to lipid vesicles. Although the hydrogen-bonding structure at the lipid-water interface remains comparable across vesicles with varied lipid compositions, the dynamics of interfacial water show divergent patterns due to specific interactions between lipids and peptides. Our findings also reveal that PIP2 becomes sequestered by bound peptides, while the distribution of PS exhibits no discernible change upon peptide binding. Interestingly, PIP2 and PS become colocalized into domains both in the presence and absence of MARCKS-ED. More broadly, this work offers molecular insights into the effects of membrane composition on binding.

4.
J Am Chem Soc ; 145(50): 27800-27809, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38061016

RESUMEN

Cells achieve high spatiotemporal control over biochemical processes through compartmentalization to membrane-bound as well as membraneless organelles that assemble by liquid-liquid phase separation. Characterizing the balance of forces within these environments is essential to understanding their stability and function, and water is an integral part of the condensate, playing an important role in mediating electrostatic and hydrogen-bonding interactions. Here, we investigate the ultrafast, picosecond hydrogen-bond dynamics of a model biocondensate consisting of a peptide poly-l-arginine (Poly-R) and the nucleic acid adenosine monophosphate (AMP) using coherent two-dimensional infrared (2D IR) spectroscopy. We investigated three vibrational modes: the arginine side-chain C═N stretches, an AMP ring mode, and the amide backbone carbonyl stretching modes. Dynamics slow considerably between the dilute phase and the condensate phase for each vibrational probe. For example, the arginine side-chain C═N modes slow from 0.38 to 2.26 ps due to strong electrostatic interactions. All-atom molecular dynamics simulations provide an atomistic interpretation of the H-bond network disruption resulting from electrostatic contributions as well as collapse within the condensate. Simulations predict that a fraction of water molecules are highly constrained within the condensate, explaining the observed slowdown in the H-bond dynamics.

5.
Opt Express ; 31(2): 2700-2709, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36785278

RESUMEN

BoxCARS and pump-probe geometries are common implementations of two-dimensional infrared (2D IR) spectroscopy. BoxCARS is background-free, generally offering greater signal-to-noise ratio, which enables measuring weak vibrational echo signals. Pulse shapers have been implemented in the pump-probe geometry to accelerate data collection and suppress scatter and other unwanted signals by precise control of the pump-pulse delay and carrier phase. Here, we introduce a 2D-IR optical setup in the BoxCARS geometry that implements a pulse shaper for rapid acquisition of background-free 2D IR spectra. We show a signal-to-noise improvement using this new fast-scan BoxCARS setup versus the pump-probe geometry within the same configuration.

6.
Chemphyschem ; 24(20): e202300404, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37486881

RESUMEN

Bottom-up design of biomimetic organelles has gained recent attention as a route towards understanding the transition between non-living matter and life. Despite various artificial lipid membranes being developed, the specific relations between lipid structure, composition, interfacial properties, and morphology are not currently understood. Sponge-phase droplets contain dense, nonlamellar lipid bilayer networks that capture the complexities of the endoplasmic reticulum (ER), making them ideal artificial models of such organelles. Here, we combine ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics simulations to investigate the interfacial H-bond networks in sponge-phase droplets composed of glycolipid and nonionic detergents. In the sponge phase, the interfacial environments are more hydrated and water molecules confined to the nanometer-scale aqueous channels in the sponge phase exhibit dynamics that are significantly slower compared to bulk water. Surfactant configurations and microscopic phase separation play a dominant role in determining membrane curvature and slow dynamics observed in the sponge phase. The studies suggest that H-bond networks within the nanometer-scale channels are disrupted not only by confinement but also by the interactions of surfactants, which extend 1-2 nm from the bilayer surface. The results provide a molecular-level description for controlling phase and morphology in the design of synthetic lipid organelles.


Asunto(s)
Células Artificiales , Gotas Lipídicas , Espectrofotometría Infrarroja/métodos , Enlace de Hidrógeno , Agua/química , Tensoactivos/química , Glucolípidos
7.
J Phys Chem A ; 127(46): 9853-9862, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37942956

RESUMEN

Coherent multidimensional spectroscopy provides experimental access to molecular structure and subpicosecond dynamics in solution. Dynamics are typically inferred from the evolution of lineshapes over a function of waiting time. Numerous spectral analysis methods, such as center/nodal line slope, have been developed to extract these dynamics. However, the extracted dynamics can depend heavily on subjective choices, such as the region selected for CLS analysis or the chosen models. In this study, we introduce a novel approach to extracting dynamics from ultrafast two-dimensional infrared (2D IR) spectra by using dynamic mode decomposition (DMD). As a data-driven method, DMD directly extracts spatiotemporal structures from the complex 2D IR spectra. We evaluated the performance of DMD in simulated and experimental spectra containing overlapped peaks. We show that DMD can retrieve the dynamics of overlapped transitions and cross peaks that are typically challenging to extract with traditional methods. In addition, we demonstrate that combining conditional generative adversarial neural networks with DMD can recover dynamics even at low signal-to-noise ratios. DMD methods do not require preliminary assumptions and can be readily extended to other multidimensional spectroscopies.

8.
Soft Matter ; 18(9): 1793-1800, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35170620

RESUMEN

Interfaces play a role in controlling the rates and outcomes of chemical processes. Characterizing the interactions at heterogeneous interfaces is critical to developing a comprehensive model of the role of interfaces and confinement in modulating chemical reactions. Reverse micelles are an ideal model system for exploring the effect of encapsulated species on interfacial environments. Here, we use a combination of ultrafast two-dimensional infrared (2D IR) spectroscopy and molecular dynamics (MD) simulations to characterize the picosecond interfacial dynamics in reverse micelles (RMs) containing acrylamide monomers and polyacrylamide polymers within the aqueous phase. The ester carbonyl vibrations of the sorbitan monostearate surfactants are examined to extract interfacial hydrogen-bonding populations and dynamics. Hydrogen bond populations at the ester carbonyl positions remain unchanged with the inclusion of either polymer or monomer species. Hydrogen-bond dynamics are not altered with the addition of monomer but are slowed down twofold in the presence of encapsulated polyacrylamide polymer species as a result of polymer chains partially localizing to the interface. These findings imply that kinetics of reactions that occur at interfaces or in confined environments could be modulated by interfacial localization of the different components.

9.
Chem Rev ; 120(15): 7152-7218, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32598850

RESUMEN

Vibrational spectroscopy is an essential tool in chemical analyses, biological assays, and studies of functional materials. Over the past decade, various coherent nonlinear vibrational spectroscopic techniques have been developed and enabled researchers to study time-correlations of the fluctuating frequencies that are directly related to solute-solvent dynamics, dynamical changes in molecular conformations and local electrostatic environments, chemical and biochemical reactions, protein structural dynamics and functions, characteristic processes of functional materials, and so on. In order to gain incisive and quantitative information on the local electrostatic environment, molecular conformation, protein structure and interprotein contacts, ligand binding kinetics, and electric and optical properties of functional materials, a variety of vibrational probes have been developed and site-specifically incorporated into molecular, biological, and material systems for time-resolved vibrational spectroscopic investigation. However, still, an all-encompassing theory that describes the vibrational solvatochromism, electrochromism, and dynamic fluctuation of vibrational frequencies has not been completely established mainly due to the intrinsic complexity of intermolecular interactions in condensed phases. In particular, the amount of data obtained from the linear and nonlinear vibrational spectroscopic experiments has been rapidly increasing, but the lack of a quantitative method to interpret these measurements has been one major obstacle in broadening the applications of these methods. Among various theoretical models, one of the most successful approaches is a semiempirical model generally referred to as the vibrational spectroscopic map that is based on a rigorous theory of intermolecular interactions. Recently, genetic algorithm, neural network, and machine learning approaches have been applied to the development of vibrational solvatochromism theory. In this review, we provide comprehensive descriptions of the theoretical foundation and various examples showing its extraordinary successes in the interpretations of experimental observations. In addition, a brief introduction to a newly created repository Web site (http://frequencymap.org) for vibrational spectroscopic maps is presented. We anticipate that a combination of the vibrational frequency map approach and state-of-the-art multidimensional vibrational spectroscopy will be one of the most fruitful ways to study the structure and dynamics of chemical, biological, and functional molecular systems in the future.


Asunto(s)
Modelos Químicos , Proteínas/química , Análisis Espectral/métodos , Humanos , Espectrometría Raman , Electricidad Estática , Vibración
10.
J Phys Chem A ; 126(35): 5881-5889, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-35968816

RESUMEN

Cells are heterogeneous on every length and time scale; cytosol contains thousands of proteins, lipids, nucleic acids, and small molecules, and molecular interactions within this crowded environment determine the structure, dynamics, and stability of biomolecules. For decades, the effects of crowding at the atomistic scale have been overlooked in favor of more tractable models largely based on thermodynamics. Crowding can affect the conformations and stability of biomolecules by modulating water structure and dynamics within the cell, and these effects are nonlocal and environment dependent. Thus, characterizing water's hydrogen-bond (H-bond) networks is a critical step toward a complete microscopic crowding model. This perspective provides an overview of molecular crowding and describes recent time-resolved spectroscopy approaches investigating H-bond networks and dynamics in crowded or otherwise complex aqueous environments. Ultrafast spectroscopy combined with atomistic simulations has emerged as a powerful combination for studying H-bond structure and dynamics in heterogeneous multicomponent systems. We discuss the ongoing challenges toward developing a complete atomistic description of macromolecular crowding from an experimental as well as a theoretical perspective.


Asunto(s)
Agua , Química Física , Enlace de Hidrógeno , Conformación Molecular , Termodinámica , Agua/química
11.
J Phys Chem A ; 126(23): 3816-3825, 2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35668543

RESUMEN

Ultrafast spectroscopy often involves measuring weak signals and long data acquisition times. Spectra are typically collected as a "pump-probe" spectrum by measuring differences in intensity across laser shots. Shot-to-shot intensity fluctuations are most often the primary source of noise in ultrafast spectroscopy. Here, we present a novel approach for denoising ultrafast two-dimensional infrared (2D IR) spectra using conditional generative adversarial neural networks (cGANNs). The cGANN approach is able to eliminate shot-to-shot noise and reconstruct the line shapes present in the noisy input spectrum. We present a general approach for training the cGANN using matched pairs of noisy and clean synthetic 2D IR spectra based on the Kubo-line shape model for a three-level system. Experimental shot-to-shot laser noise is added to synthetic spectra to recreate the noise profile present in measured experimental spectra. The cGANNs can recover line shapes from synthetic 2D IR spectra with signal-to-noise ratios as low as 2:1, while largely preserving the key features such as center frequencies, line widths, and diagonal elongation. In addition, we benchmark the performance of the cGANN using experimental 2D IR spectra of an ester carbonyl vibrational probe and demonstrate that, by applying the cGANN denoising approach, we can extract the frequency-frequency time correlation function (FFCF) from reconstructed spectra using a nodal-line slope analysis. Finally, we provide a set of practical guidelines for extending the denoising method to other coherent multidimensional spectroscopies.


Asunto(s)
Redes Neurales de la Computación , Vibración , Relación Señal-Ruido , Espectrofotometría Infrarroja/métodos
12.
J Chem Phys ; 156(7): 075102, 2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35183070

RESUMEN

Inverted-headgroup (choline-phosphate) lipids are synthetic lipids that are not found in nature and are used as model systems to understand the role of headgroup dipole orientation. Recently, studies revealed that the net orientation of interfacial water strongly depends on the headgroup electrostatics, i.e., the charges and dipole generated by the phosphate and the choline groups. In order to characterize interfacial H-bond dynamics, we measured two-dimensional infrared spectra of the ester carbonyl band and performed molecular dynamics simulations in fully hydrated 1,2-dioleoyl-sn-glycero-3-phosphocholine and 2-((2,3-bis(oleoyloxy)propyl)-dimethyl-ammonio)ethyl ethyl phosphate (DOCPe) lipid bilayers. The experiments and simulations suggest that the reverse dipole generated by the inverted-headgroup in DOCPe does not affect the carbonyl H-bond populations or the interfacial water H-bond dynamics. However, while phosphate-associated waters in both lipids appear to show a similar H-bond structure, carbonyl-associated waters are characterized by a slightly disrupted H-bond structure in the DOCPe bilayer, especially within the second hydration shell. Our findings show that changes in net water orientation perturb the water H-bonds at the linker region between the headgroup and the lipid tail, although this perturbation is weak.

13.
J Chem Phys ; 156(10): 104106, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35291777

RESUMEN

Vibrational spectroscopy is a useful technique for probing chemical environments. The development of models that can reproduce the spectra of nitriles and azides is valuable because these probes are uniquely suited for investigating complex systems. Empirical vibrational spectroscopic maps are commonly employed to obtain the instantaneous vibrational frequencies during molecular dynamics simulations but often fail to adequately describe the behavior of these probes, especially in its transferability to a diverse range of environments. In this paper, we demonstrate several reasons for the difficulty in constructing a general-purpose vibrational map for methyl thiocyanate (MeSCN), a model for cyanylated biological probes. In particular, we found that electrostatics alone are not a sufficient metric to categorize the environments of different solvents, and the dominant features in intermolecular interactions in the energy landscape vary from solvent to solvent. Consequently, common vibrational mapping schemes do not cover all essential interaction terms adequately, especially in the treatment of van der Waals interactions. Quantum vibrational perturbation (QVP) theory, along with a combined quantum mechanical and molecular mechanical potential for solute-solvent interactions, is an alternative and efficient modeling technique, which is compared in this paper, to yield spectroscopic results in good agreement with experimental FTIR. QVP has been used to analyze the computational data, revealing the shortcomings of the vibrational maps for MeSCN in different solvents. The results indicate that insights from QVP analysis can be used to enhance the transferability of vibrational maps in future studies.

14.
Angew Chem Int Ed Engl ; 61(29): e202200549, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35546783

RESUMEN

Cell membranes define the boundaries of life and primarily consist of phospholipids. Living organisms assemble phospholipids by enzymatically coupling two hydrophobic tails to a soluble polar head group. Previous studies have taken advantage of micellar assembly to couple single-chain precursors, forming non-canonical phospholipids. However, biomimetic nonenzymatic coupling of two alkyl tails to a polar head-group remains challenging, likely due to the sluggish reaction kinetics of the initial coupling step. Here we demonstrate rapid de novo formation of biomimetic liposomes in water using dual oxime bond formation between two alkyl chains and a phosphocholine head group. Membranes can be generated from non-amphiphilic, water-soluble precursors at physiological conditions using micromolar concentrations of precursors. We demonstrate that functional membrane proteins can be reconstituted into synthetic oxime liposomes from bacterial extracts in the absence of detergent-like molecules.


Asunto(s)
Liposomas , Oximas , Membrana Celular/metabolismo , Liposomas/química , Fosfolípidos/química , Agua
15.
Acc Chem Res ; 53(9): 1860-1868, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32866390

RESUMEN

Lipid membranes are more than just barriers between cell compartments; they provide molecular environments with a finely tuned balance between hydrophilic and hydrophobic interactions that enable proteins to dynamically fold and self-assemble to regulate biological function. Characterizing dynamics at the lipid-water interface is essential to understanding molecular complexities from the thermodynamics of liquid-liquid phase separation down to picosecond-scale reorganization of interfacial hydrogen-bond networks.Ultrafast vibrational spectroscopy, including two-dimensional infrared (2D IR) and vibrational sum-frequency generation (VSFG) spectroscopies, is a powerful tool to examine picosecond interfacial dynamics. Two-dimensional IR spectroscopy provides a bond-centered view of dynamics with subpicosecond time resolutions, as vibrational frequencies are highly sensitive to the local environment. Recently, 2D IR spectroscopy has been applied to carbonyl and phosphate vibrations intrinsically located at the lipid-water interface. Interface-specific VSFG spectroscopy probes the water vibrational modes directly, accessing H-bond strength and water organization at lipid headgroup positions. Signals in VSFG arise from the interfacial dipole contributions, directly probing headgroup ordering and water orientation to provide a structural view of the interface.In this Account we discuss novel applications of ultrafast spectroscopy to lipid membranes, a field that has experienced significant growth over the past decade. In particular, ultrafast experiments now offer a molecular perspective on increasingly complex membranes. The powerful combination of ultrafast, interface-selective spectroscopy and simulations opens up new routes to understanding multicomponent membranes and their function. This Account highlights key prevailing views that have emerged from recent experiments: (1) Water dynamics at the lipid-water interface are slow compared to those of bulk water as a result of disrupted H-bond networks near the headgroups. (2) Peptides, ions, osmolytes, and cosolvents perturb interfacial dynamics, indicating that dynamics at the interface are affected by bulk solvent dynamics and vice versa. (3) The interfacial environment is generally dictated by the headgroup structure and orientation, but hydrophobic interactions within the acyl chains also modulate interfacial dynamics. Ultrafast spectroscopy has been essential to characterizing the biophysical chemistry of the lipid-water interface; however, challenges remain in interpreting congested spectra as well as designing appropriate model systems to capture the complexity of a membrane environment.


Asunto(s)
Lípidos de la Membrana/química , Agua/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Iones/química , Péptidos/química , Solventes/química , Espectrofotometría Infrarroja
16.
Phys Chem Chem Phys ; 23(38): 21690-21700, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34581354

RESUMEN

The biological importance of lanthanides, and the early lanthanides (La3+-Nd3+) in particular, has only recently been recognized, and the structural principles underlying selective binding of lanthanide ions in biology are not yet well established. Lanmodulin (LanM) is a novel protein that displays unprecedented affinity and selectivity for lanthanides over most other metal ions, with an uncommon preference for the early lanthanides. Its utilization of EF-hand motifs to bind lanthanides, rather than the Ca2+ typically recognized by these motifs in other proteins, has led it to be used as a model system to understand selective lanthanide recognition. Two-dimensional infrared (2D IR) spectroscopy combined with molecular dynamics simulations were used to investigate LanM's selectivity mechanisms by characterizing local binding site geometries upon coordination of early and late lanthanides as well as calcium. These studies focused on the protein's uniquely conserved proline residues in the second position of each EF-hand binding loop. We found that these prolines constrain the EF-hands for strong coordination of early lanthanides. Substitution of this proline results in a more flexible binding site to accommodate a larger range of ions but also results in less compact coordination geometries and greater disorder within the binding site. Finally, we identify the conserved glycine in the sixth position of each EF-hand as a mediator of local binding site conformation and global secondary structure. Uncovering fundamental structure-function relationships in LanM informs the development of synthetic biology technologies targeting lanthanides in industrial applications.


Asunto(s)
Proteínas Bacterianas/química , Complejos de Coordinación/química , Elementos de la Serie de los Lantanoides/química , Simulación de Dinámica Molecular , Teoría Funcional de la Densidad , Espectrofotometría Infrarroja
17.
J Phys Chem A ; 125(29): 6498-6504, 2021 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-34259508

RESUMEN

Ultrafast two-dimensional infrared (2D IR) spectroscopy and Fourier transform infrared (FTIR) spectroscopy are often performed in tandem, with FTIR typically used to interpret and provide hypotheses for 2D IR experiments. Comparisons between 2D IR and FTIR spectra can also be used to examine the structure and orientation in systems of coupled vibrational chromophores. The most common method for comparing 2D IR and FTIR lineshapes, the diagonal slice method, contains significant artifacts when applied to oscillators with low anharmonicities. Here, we introduce a new technique, the pump slice amplitude (PSA) method, for relating 2D IR lineshapes to FTIR lineshapes and compare PSAs against diagonal slices using theoretical and experimental spectra. We find that PSAs are significantly more similar to FTIR lineshapes than diagonal slices in systems with low anharmonicity.

18.
J Chem Phys ; 154(17): 170901, 2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34241044

RESUMEN

Surfactant science has historically emphasized bulk, thermodynamic measurements to understand the microemulsion properties of greatest industrial significance, such as interfacial tensions, phase behavior, and thermal stability. Recently, interest in the molecular properties of surfactants has grown among the physical chemistry community. This has led to the application of cutting-edge spectroscopic methods and advanced simulations to understand the specific interactions that give rise to the previously studied bulk characteristics. In this Perspective, we catalog key findings that describe the surfactant-oil and surfactant-water interfaces in molecular detail. We emphasize the role of ultrafast spectroscopic methods, including two-dimensional infrared spectroscopy and sum-frequency-generation spectroscopy, in conjunction with molecular dynamics simulations, and the role these techniques have played in advancing our understanding of interfacial properties in surfactant microemulsions.

19.
Proc Natl Acad Sci U S A ; 115(14): E3126-E3134, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29545272

RESUMEN

The Ca2+-sensing protein calmodulin (CaM) is a popular model of biological ion binding since it is both experimentally tractable and essential to survival in all eukaryotic cells. CaM modulates hundreds of target proteins and is sensitive to complex patterns of Ca2+ exposure, indicating that it functions as a sophisticated dynamic transducer rather than a simple on/off switch. Many details of this transduction function are not well understood. Fourier transform infrared (FTIR) spectroscopy, ultrafast 2D infrared (2D IR) spectroscopy, and electronic structure calculations were used to probe interactions between bound metal ions (Ca2+ and several trivalent lanthanide ions) and the carboxylate groups in CaM's EF-hand ion-coordinating sites. Since Tb3+ is commonly used as a luminescent Ca2+ analog in studies of protein-ion binding, it is important to characterize distinctions between the coordination of Ca2+ and the lanthanides in CaM. Although functional assays indicate that Tb3+ fully activates many Ca2+-dependent proteins, our FTIR spectra indicate that Tb3+, La3+, and Lu3+ disrupt the bidentate coordination geometry characteristic of the CaM binding sites' strongly conserved position 12 glutamate residue. The 2D IR spectra indicate that, relative to the Ca2+-bound form, lanthanide-bound CaM exhibits greater conformational flexibility and larger structural fluctuations within its binding sites. Time-dependent 2D IR lineshapes indicate that binding sites in Ca2+-CaM occupy well-defined configurations, whereas binding sites in lanthanide-bound-CaM are more disordered. Overall, the results show that binding to lanthanide ions significantly alters the conformation and dynamics of CaM's binding sites.


Asunto(s)
Calcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Elementos de la Serie de los Lantanoides/metabolismo , Conformación Proteica , Sitios de Unión , Calcio/química , Humanos , Elementos de la Serie de los Lantanoides/química , Modelos Moleculares , Unión Proteica , Dominios Proteicos
20.
Biophys J ; 118(11): 2694-2702, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32362342

RESUMEN

Calcium ions bind to lipid membranes containing anionic lipids; however, characterizing the specific ion-lipid interactions in multicomponent membranes has remained challenging because it requires nonperturbative lipid-specific probes. Here, using a combination of isotope-edited infrared spectroscopy and molecular dynamics simulations, we characterize the effects of a physiologically relevant (2 mM) Ca2+ concentration on zwitterionic phosphatidylcholine and anionic phosphatidylserine lipids in mixed lipid membranes. We show that Ca2+ alters hydrogen bonding between water and lipid headgroups by forming a coordination complex involving the lipid headgroups and water. These interactions distort interfacial water orientations and prevent hydrogen bonding with lipid ester carbonyls. We demonstrate, experimentally, that these effects are more pronounced for the anionic phosphatidylserine lipids than for zwitterionic phosphatidylcholine lipids in the same membrane.


Asunto(s)
Calcio , Membrana Dobles de Lípidos , Enlace de Hidrógeno , Isótopos , Fosfatidilcolinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA