Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202412056, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041859

RESUMEN

Solvent competition for London dispersion attenuates its energetic significance in molecular recognition processes. By varying both the stacked contact area and the solvent, here we experimentally deconvolute solvent attenuation using molecular balances. Experimental stacking energies (phenyl to pyrene) correlated strongly with calculations only when dispersion was considered. Such calculations favoured stacking by up to -27 kJ mol-1 in the gas phase, but it was weakly disfavoured in our solution-phase experiments (+0.5 to +4.6 kJ mol-1). Nonetheless, the propensity for stacking increased with contact area and in solvents with lower bulk polarisabilities that compete less for dispersion. Experimental stacking energies ranged from -0.02 kJ mol-1 Å-2 in CS2, to -0.05 kJ mol-1 Å-2 in CD2Cl2, but were dwarfed by the calculated gas-phase energy of -0.6 kJ mol-1 Å-2. The results underscore the challenge facing the exploitation of dispersion in solution. Solvent competition strongly but imperfectly cancels dispersion at molecular recognition interfaces, making the energetic benefits difficult to realise.

2.
J Am Chem Soc ; 145(50): 27367-27379, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38060428

RESUMEN

Despite their hydrophobic surfaces with localized π-holes and rigid well-defined architectures providing a scaffold for preorganizing binding motifs, fullerenes remain unexplored as potential supramolecular host platforms for the recognition of anions. Herein, we present the first example of the rational design, synthesis, and unique recognition properties of novel fullerene-functionalized halogen-bonding (XB) heteroditopic ion-pair receptors containing cation and anion binding domains spatially separated by C60. Fullerene spatial separation of the XB donors and the crown ether complexed potassium cation resulted in a rare example of an artificial receptor containing two anion binding sites with opposing preferences for hard and soft halides. Importantly, the incorporation of the C60 motif into the heteroditopic receptor structure has a significant effect on the halide binding selectivity, which is further amplified upon K+ cation binding. The potassium cation complexed fullerene-based receptors exhibit enhanced selectivity for the soft polarizable iodide ion which is assisted by the C60 scaffold preorganizing the potent XB-based binding domains, anion-π interactions, and the exceptional polarizability of the fullerene moiety, as evidenced from DFT calculations. These observations serve to highlight the unique properties of fullerene surfaces for proximal charged guest binding with potential applications in construction of selective molecular sensors and modulating the properties of solar cell devices.

3.
Angew Chem Int Ed Engl ; 62(14): e202300867, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36749115

RESUMEN

Mimicking Nature's polymeric protein architectures by designing hosts with binding cavities screened from bulk solvent is a promising approach to achieving anion recognition in competitive media. Accomplishing this, however, can be synthetically demanding. Herein we present a synthetically tractable approach, by directly incorporating potent supramolecular anion-receptive motifs into a polymeric scaffold, tuneable through a judicious selection of the co-monomer. A comprehensive analysis of anion recognition and sensing is demonstrated with redox-active, halogen bonding polymeric hosts. Notably, the polymeric hosts consistently outperform their monomeric analogues, with especially large halide binding enhancements of ca. 50-fold observed in aqueous-organic solvent mixtures. These binding enhancements are rationalised by the generation and presentation of low dielectric constant binding microenvironments from which there is appreciable solvent exclusion.

4.
Phys Rev Lett ; 125(5): 056001, 2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32794889

RESUMEN

Two oppositely charged surfaces separated by a dielectric medium attract each other. In contrast we observe a strong repulsion between two plates of a capacitor that is filled with an aqueous electrolyte upon application of an alternating potential difference between the plates. This long-range force increases with the ratio of diffusion coefficients of the ions in the medium and reaches a steady state after a few minutes, which is much larger than the millisecond timescale of diffusion across the narrow gap. The repulsive force, an order of magnitude stronger than the electrostatic attraction observed in the same setup in air, results from the increase in osmotic pressure as a consequence of the field-induced excess of cations and anions due to lateral transport from adjacent reservoirs.

5.
Org Biomol Chem ; 16(28): 5188-5196, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29971303

RESUMEN

The synthesis, structure and anion recognition properties of an extensive, rationally designed series of bisamide derivatives of 1,8-diaminocarbazole and 1,8-diamino-3,6-dichlorocarbazole are described. Despite simple structures and the presence of only three hydrogen bond donors, such compounds are remarkably strong and selective receptors for oxyanions in DMSO + 0.5%H2O. Owing to their carbazole fluorophore, they are also sensitive turn-on fluorescent sensors for H2PO4- and AcO-, with a more than 15-fold increase in fluorescence intensity upon binding. Despite relatively weak chloride affinity, some of the diamidocarbazoles have also been shown, for the first time, to be very active chloride transporters through lipid bilayers. The binding, sensing and transport properties of these receptors can be easily modulated by the usually overlooked variations in the length and degree of branching of their alkyl side arms. Overall, this study demonstrates that the 1,8-diamidocarbazole binding unit is a very promising and synthetically versatile platform for the development of fluorescent sensors and transporters for anions.

6.
Org Biomol Chem ; 15(28): 5968-5975, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28675234

RESUMEN

A linear, uncharged, hydrogen bonding receptor A with two carbazole-based binding domains was synthesised and evaluated for its anion binding properties in DMSO/H2O mixtures. 1H NMR titrations revealed that, in DMSO/H2O 0.5%, A forms both 1 : 1 and 1 : 2 complexes with SO42-, H2PO4-, PhCOO- and Cl-. In 1 : 1 complexes the receptor encloses the tetrahedral anions tightly, forming a helical structure, while Cl- binds with a single carbazole unit only. In the presence of 10% of water the 1 : 2 complexes with SO42- and PhCOO- disappear, and the respective 1 : 1 binding constants decrease sufficiently to be quantified by UV-Vis titration. In this highly competitive medium, A binds sulfate with K1:1 = 105.47 M-1, i.e., it binds approx. 30, 360 and >1000 times more strongly than H2PO4-, PhCOO- and Cl-, respectively. Furthermore, the association with sulfate is over 50 times stronger than that for a model diamidocarbazole 1 under identical conditions, suggesting a very strong chelating effect due to the diglycoyl linker. Increasing the amount of water to 25% (the solubility limit of A) lowers the 1 : 1 binding constant with SO42- to 103.73 M-1. Receptor A was shown to act as a selective turn-on fluorescent sensor for sulfate, able to sense sulfate in sulfate-rich mineral water.

7.
Chem Sci ; 15(5): 1796-1809, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38303949

RESUMEN

Anion templation strategies have facilitated the synthesis of various catenane and rotaxane hosts capable of strong and selective binding of anions in competitive solvents. However, this approach has primarily relied on positively charged precursors, limiting the structural diversity and the range of potential applications of the anion-templated mechanically interlocked molecules. Here we demonstrate the synthesis of a rare electroneutral [2]catenane using a powerful, doubly charged sulfate template and a complementary diamidocarbazole-based hydrogen bonding precursor. Owing to the unique three-dimensional hydrogen bonding cavity and the embedded carbazole fluorophores, the resulting catenane receptor functions as a sensitive fluorescent turn-ON sensor for the highly hydrophilic sulfate, even in the presence of a large excess of water. Importantly, the [2]catenane exhibits enhanced binding affinity and selectivity for sulfate over its parent macrocycle and other acyclic diamidocarbazole-based receptors. We demonstrate also, for the first time, that the co-conformation of the catenane may be controlled by reversible acid/base induced protonation and deprotonation of the anionic template, SO42-. This approach pioneers a new strategy to induce molecular motion of interlocked components using switchable anionic templates.

8.
Chem Sci ; 13(42): 12374-12381, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36382290

RESUMEN

The transport of amino acids across lipid membranes is vital for the proper functioning of every living cell. In spite of that, examples of synthetic transporters that can facilitate amino acid transport are rare. This is mainly because at physiological conditions amino acids predominantly exist as highly polar zwitterions and proper shielding of their charged termini, which is necessary for fast diffusion across lipophilic membranes, requires complex and synthetically challenging heteroditopic receptors. Here we report the first simple monotopic anion receptor, dithioamide 1, that efficiently transports a variety of natural amino acids across lipid bilayers at physiological pH. Mechanistic studies revealed that the receptor rapidly transports deprotonated amino acids, even though at pH 7.4 these forms account for less than 3% of the total amino acid concentration. We also describe a new fluorescent assay for the selective measurement of the transport of deprotonated amino acids into liposomes. The new assay allowed us to study the pH-dependence of amino acid transport and elucidate the mechanism of transport by 1, as well as to explain its exceptionally high activity. With the newly developed assay we screened also four other representative examples of monotopic anion transporters, of which two showed promising activity. Our results imply that heteroditopic receptors are not necessary for achieving high amino acid transport activities and that many of the previously reported anionophores might be active amino acid transporters. Based on these findings, we propose a new strategy for the development of artificial amino acid transporters with improved properties.

9.
Chem Commun (Camb) ; 56(36): 4910-4913, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32238998

RESUMEN

A simple di(thioamido)carbazole 1 serves as a potent multispecific transporter for various biologically relevant oxyanions, such as drugs, metabolites and model organic phosphate. The transport kinetics of a wide range of oxyanions can be easily quantified by a modified lucigenin assay in both large and giant unilamellar vesicles.


Asunto(s)
Carbazoles/metabolismo , Membrana Dobles de Lípidos/metabolismo , Oxígeno/metabolismo , Tioamidas/metabolismo , Liposomas Unilamelares/metabolismo , Transporte Biológico , Carbazoles/química , Cinética , Membrana Dobles de Lípidos/química , Estructura Molecular , Oxígeno/química , Tioamidas/química , Liposomas Unilamelares/química
10.
Chem Commun (Camb) ; 50(11): 1305-8, 2014 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-24336487

RESUMEN

Simple, easily available diamidocarbazoles form robust 2 : 1 complexes with SO4(2-) even in the presence of a large excess of water. An appropriate choice of side arms directs the assembly towards the formation of either an orthogonal or a biplane structure, both in solution and in the solid state.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA