Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 30(5): e202302916, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37902438

RESUMEN

Blood continually contributes to the maintenance of homeostasis of the body and contains information regarding the health state of an individual. However, current hematological analyses predominantly rely on a limited number of CD markers and morphological analysis. In this work, differentially sensitive fluorescent compounds based on TCF scaffolds are introduced that are designed for fluorescent phenotyping of blood. Depending on their structures, TCF compounds displayed varied responses to reactive oxygen species, biothiols, redox-related biomolecules, and hemoglobin, which are the primary influential factors within blood. Contrary to conventional CD marker-based analysis, this unbiased fluorescent phenotyping method produces diverse fingerprints of the health state. Precise discrimination of blood samples from 37 mice was demonstrated based on their developmental stages, ranging from 10 to 19 weeks of age. Additionally, this fluorescent phenotyping method enabled the differentiation between drugs with distinct targets, serving as a simple yet potent tool for pharmacological analysis to understand the mode of action of various drugs.


Asunto(s)
Envejecimiento , Colorantes Fluorescentes , Ratones , Animales , Colorantes Fluorescentes/química , Especies Reactivas de Oxígeno/análisis , Oxidación-Reducción , Células Sanguíneas/química
2.
Small ; 18(22): e2200245, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35315219

RESUMEN

Afterglow is superior to other optical modalities for biomedical applications in that it can exclude the autofluorescence background. Nevertheless, afterglow has rarely been applied to the high-contrast "off-to-on" activatable sensing scheme because the complicated afterglow systems hamper the additional inclusion of sensory functions while preserving the afterglow luminescence. Herein, a simple formulation of a multifunctional components-incorporated afterglow nanosensor (MANS) is developed for the superoxide-responsive activatable afterglow imaging of cisplatin-induced kidney injury. A multifunctional iridium complex (Ir-OTf) is designed to recover its photoactivities (phosphorescence and the ability of singlet oxygen-generating afterglow initiator) upon exposure to superoxide. To construct the nanoscopic afterglow detection system (MANS), Ir-OTf is incorporated with another multifunctional molecule (rubrene) in the polymeric micellar nanoparticle, where rubrene also plays dual roles as an afterglow substrate and a luminophore. The multiple functions covered by Ir-OTf and rubrene renders the composition of MANS quite simple, which exhibits superoxide-responsive "off-to-on" activatable afterglow luminescence for periods longer than 11 min after the termination of pre-excitation. Finally, MANS is successfully applied to the molecular imaging of cisplatin-induced kidney injury with activatable afterglow signals responsive to pathologically overproduced superoxide in a mouse model without autofluorescence background.


Asunto(s)
Lesión Renal Aguda , Superóxidos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/diagnóstico por imagen , Animales , Cisplatino , Ratones , Imagen Molecular , Imagen Óptica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA