RESUMEN
OBJECTIVE: GM2 gangliosidosis is usually fatal by 5 years of age in its 2 major subtypes, Tay-Sachs and Sandhoff disease. First reported in 1881, GM2 gangliosidosis has no effective treatment today, and children succumb to the disease after a protracted neurodegenerative course and semi-vegetative state. This study seeks to further develop adeno-associated virus (AAV) gene therapy for human translation. METHODS: Cats with Sandhoff disease were treated by intracranial injection of vectors expressing feline ß-N-acetylhexosaminidase, the enzyme deficient in GM2 gangliosidosis. RESULTS: Hexosaminidase activity throughout the brain and spinal cord was above normal after treatment, with highest activities at the injection sites (thalamus and deep cerebellar nuclei). Ganglioside storage was reduced throughout the brain and spinal cord, with near complete clearance in many regions. While untreated cats with Sandhoff disease lived for 4.4 ± 0.6 months, AAV-treated cats lived to 19.1 ± 8.6 months, and 3 of 9 cats lived >21 months. Correction of the central nervous system was so effective that significant increases in lifespan led to the emergence of otherwise subclinical peripheral disease, including megacolon, enlarged stomach and urinary bladder, soft tissue spinal cord compression, and patellar luxation. Throughout the gastrointestinal tract, neurons of the myenteric and submucosal plexuses developed profound pathology, demonstrating that the enteric nervous system was inadequately treated. INTERPRETATION: The vector formulation in the current study effectively treats neuropathology in feline Sandhoff disease, but whole-body targeting will be an important consideration in next-generation approaches. ANN NEUROL 2023;94:969-986.
Asunto(s)
Gangliosidosis GM2 , Enfermedad de Sandhoff , Niño , Animales , Gatos , Humanos , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , Enfermedad de Sandhoff/veterinaria , Insuficiencia Multiorgánica/terapia , Vectores Genéticos , Sistema Nervioso Central/patología , Terapia GenéticaRESUMEN
Sandhoff disease (SD) is an autosomal recessive lysosomal storage disease caused by defects in the ß-subunit of ß-N-acetylhexosaminidase (Hex), the enzyme that catabolizes GM2 ganglioside. Hex deficiency causes neuronal storage of GM2 and related glycoconjugates, resulting in progressive neurodegeneration and death, typically in infancy. No effective treatment exists for human patients. Adeno-associated virus (AAV) gene therapy led to improved clinical outcome and survival of SD cats treated before the onset of disease symptoms. Most human patients are diagnosed after clinical disease onset, so it is imperative to test AAV-gene therapy in symptomatic SD cats to provide a realistic indication of therapeutic benefits that can be expected in humans. In this study, AAVrh8 vectors injected into the thalamus and deep cerebellar nuclei of symptomatic SD cats resulted in widespread central nervous system enzyme distribution, although a substantial burden of storage material remained. Cats treated in the early symptomatic phase showed delayed disease progression and a significant survival increase versus untreated cats. Treatment was less effective when administered later in the disease course, although therapeutic benefit was still possible. Results are encouraging for the treatment of human patients and provide support for the development AAV-gene therapy for human SD.
Asunto(s)
Enfermedad de Sandhoff , Animales , Gatos , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética , Vectores Genéticos/genética , Humanos , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , beta-N-Acetilhexosaminidasas/genéticaRESUMEN
GM1 gangliosidosis is a fatal neurodegenerative disease that affects individuals of all ages. Favorable outcomes using adeno-associated viral (AAV) gene therapy in GM1 mice and cats have prompted consideration of human clinical trials, yet there remains a paucity of objective biomarkers to track disease status. We developed a panel of biomarkers using blood, urine, cerebrospinal fluid (CSF), electrodiagnostics, 7 T MRI, and magnetic resonance spectroscopy in GM1 cats-either untreated or AAV treated for more than 5 years-and compared them to markers in human GM1 patients where possible. Significant alterations were noted in CSF and blood of GM1 humans and cats, with partial or full normalization after gene therapy in cats. Gene therapy improved the rhythmic slowing of electroencephalograms (EEGs) in GM1 cats, a phenomenon present also in GM1 patients, but nonetheless the epileptiform activity persisted. After gene therapy, MR-based analyses revealed remarkable preservation of brain architecture and correction of brain metabolites associated with microgliosis, neuroaxonal loss, and demyelination. Therapeutic benefit of AAV gene therapy in GM1 cats, many of which maintain near-normal function >5 years post-treatment, supports the strong consideration of human clinical trials, for which the biomarkers described herein will be essential for outcome assessment.
Asunto(s)
Biomarcadores , Gangliosidosis GM1/genética , Gangliosidosis GM1/metabolismo , Terapia Genética , Animales , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/orina , Gatos , Dependovirus/clasificación , Dependovirus/genética , Modelos Animales de Enfermedad , Electroencefalografía , Gangliosidosis GM1/mortalidad , Gangliosidosis GM1/terapia , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Humanos , Hipocalcemia/metabolismo , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Resultado del TratamientoRESUMEN
Sandhoff disease (SD) is a fatal neurodegenerative disease caused by a mutation in the enzyme ß-N-acetylhexosaminidase. Children with infantile onset SD develop seizures, loss of motor tone and swallowing problems, eventually reaching a vegetative state with death typically by 4years of age. Other symptoms include vertebral gibbus and cardiac abnormalities strikingly similar to those of the mucopolysaccharidoses. Isolated fibroblasts from SD patients have impaired catabolism of glycosaminoglycans (GAGs). To evaluate mucopolysaccharidosis-like features of the feline SD model, we utilized radiography, MRI, echocardiography, histopathology and GAG quantification of both central nervous system and peripheral tissues/fluids. The feline SD model exhibits cardiac valvular and structural abnormalities, skeletal changes and spinal cord compression that are consistent with accumulation of GAGs, but are much less prominent than the severe neurologic disease that defines the humane endpoint (4.5±0.5months). Sixteen weeks after intracranial AAV gene therapy, GAG storage was cleared in the SD cat cerebral cortex and liver, but not in the heart, lung, skeletal muscle, kidney, spleen, pancreas, small intestine, skin, or urine. GAG storage worsens with time and therefore may become a significant source of pathology in humans whose lives are substantially lengthened by gene therapy or other novel treatments for the primary, neurologic disease.
Asunto(s)
Terapia Genética , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/terapia , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/uso terapéutico , Adenoviridae/genética , Estructuras Animales/patología , Animales , Gatos , Modelos Animales de Enfermedad , Vectores Genéticos , Humanos , Mucopolisacaridosis/genética , Mucopolisacaridosis/patología , Mucopolisacaridosis/terapia , Fenotipo , Enfermedad de Sandhoff/fisiopatología , Enfermedad de Sandhoff/orinaRESUMEN
Salutary responses to adeno-associated viral (AAV) gene therapy have been reported in the mouse model of Sandhoff disease (SD), a neurodegenerative lysosomal storage disease caused by deficiency of ß-N-acetylhexosaminidase (Hex). While untreated mice reach the humane endpoint by 4.1 months of age, mice treated by a single intracranial injection of vectors expressing human hexosaminidase may live a normal life span of 2 years. When treated with the same therapeutic vectors used in mice, two cats with SD lived to 7.0 and 8.2 months of age, compared with an untreated life span of 4.5 ± 0.5 months (n = 11). Because a pronounced humoral immune response to both the AAV1 vectors and human hexosaminidase was documented, feline cDNAs for the hexosaminidase α- and ß-subunits were cloned into AAVrh8 vectors. Cats treated with vectors expressing feline hexosaminidase produced enzymatic activity >75-fold normal at the brain injection site with little evidence of an immune infiltrate. Affected cats treated with feline-specific vectors by bilateral injection of the thalamus lived to 10.4 ± 3.7 months of age (n = 3), or 2.3 times as long as untreated cats. These studies support the therapeutic potential of AAV vectors for SD and underscore the importance of species-specific cDNAs for translational research.
Asunto(s)
Enfermedades de los Gatos/enzimología , Enfermedades de los Gatos/terapia , Enfermedad de Sandhoff/enzimología , Enfermedad de Sandhoff/terapia , beta-N-Acetilhexosaminidasas/metabolismo , Animales , Enfermedades de los Gatos/genética , Gatos , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética/métodos , Vectores Genéticos/genética , Enfermedad de Sandhoff/genética , beta-N-Acetilhexosaminidasas/genéticaRESUMEN
Rabies is the deadliest viral infection known, with no reliable treatment, and although it is entirely preventable, rabies continues to kill more than 60,000 people every year, mostly children in countries where dog rabies is endemic. America is only 1 generation away from the time when rabies killed more than 10,000 animals and 50 Americans every year, but 3 to 5 Americans continue to die annually from rabies. Distressingly, > 50,000 Americans undergo rabies prevention therapy every year after exposure to potentially rabid animals. While enormous progress has been made, more must be done to defeat this ancient but persistent, fatal zoonosis. In the US, lack of public awareness and ambivalence are the greatest dangers imposed by rabies, resulting in unnecessary exposures, anxiety, and risk. Veterinarians have a special role in informing and reassuring the public about prevention and protection from rabies. This summary of current facts and future advances about rabies will assist veterinarians in informing their clients about the disease.
Asunto(s)
Enfermedades de los Perros , Vacunas Antirrábicas , Rabia , Veterinarios , Animales , Perros , Humanos , Rabia/epidemiología , Rabia/prevención & control , Rabia/veterinaria , Zoonosis , Ansiedad , Trastornos de Ansiedad , Vacunas Antirrábicas/uso terapéutico , Enfermedades de los Perros/prevención & control , Enfermedades de los Perros/epidemiologíaRESUMEN
OBJECTIVE: To determine the earliest day of gestation at which relaxin could be detected in pregnant queens by use of a commercially available point-of-care test designed for use in dogs, and to calculate sensitivity and specificity of the test for pregnancy detection on any specified day of gestation. DESIGN: Evaluation study. ANIMALS: 162 female cats (24 queens from a breeding colony, 128 stray and feral queens undergoing ovariohysterectomy, and 10 ovariohysterectomized cats). PROCEDURES: 24 queens were monitored for pregnancy. Blood samples were collected daily and tested for relaxin until 2 consecutive positive test results were obtained. The earliest day of pregnancy detection was estimated by counting backward from the day of parturition to the day of the first positive test. The uteri, ovaries, and any fetuses of 128 stray and feral queens undergoing ovariohysterectomy were examined grossly, and gestational day in pregnant queens was determined on the basis of fetal crown-rump length. Blood samples from these queens and from 10 cats ovariohysterectomized prior to the study were collected for relaxin testing. RESULTS: Pregnancy was detected by use of the relaxin test kit as early as gestational day 20; sensitivity of the test was 100% on and after gestational day 29. False-positive results were detected in 3 queens, 2 of which had large (approx 2×3-cm) ovarian cysts, resulting in a specificity of 95.9%. CONCLUSIONS AND CLINICAL RELEVANCE: A commercially available relaxin test kit designed for use in dogs can be used to reliably detect pregnancy in cats.
Asunto(s)
Pruebas de Embarazo/veterinaria , Preñez , Relaxina/sangre , Pruebas Serológicas/veterinaria , Animales , Gatos , Femenino , Valor Predictivo de las Pruebas , Embarazo , Preñez/sangre , Sensibilidad y EspecificidadRESUMEN
GM2 gangliosidosis is a fatal, progressive neuronopathic lysosomal storage disease resulting from a deficiency of beta-N-acetylhexosaminidase (EC 3.2.1.52) activity. GM2 gangliosidosis occurs with varying degrees of severity in humans and in a variety of animals, including cats. In the current research, European Burmese cats presented with clinical neurological signs and histopathological features typical of a lysosomal storage disease. Thin layer chromatography revealed substantial storage of GM2 ganglioside in brain tissue of affected cats, and assays with a synthetic fluorogenic substrate confirmed the absence of hexosaminidase activity. When the hexosaminidase beta-subunit cDNA was sequenced from affected cats, a 91 base pair deletion constituting the entirety of exon 12 was documented. Subsequent sequencing of introns 11 and 12 revealed a 15 base pair deletion at the 3' end of intron 11 that included the preferred splice acceptor site, generating two minor transcripts from cryptic splice acceptor sites in affected Burmese cats. In the cerebral cortex of affected cats, hexosaminidase beta-subunit mRNA levels were approximately 1.5 times higher than normal (P<0.001), while beta-subunit protein levels were substantially reduced on Western blots.
Asunto(s)
Enfermedades de los Gatos/enzimología , Enfermedades por Almacenamiento Lisosomal/veterinaria , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/enzimología , Cadena beta de beta-Hexosaminidasa/metabolismo , Animales , Secuencia de Bases , Western Blotting , Gatos , Corteza Cerebral/enzimología , Corteza Cerebral/patología , Cromatografía en Capa Delgada , Análisis Mutacional de ADN , Europa (Continente) , Gangliosidosis GM2/enzimología , Gangliosidosis GM2/patología , Lípidos/análisis , Enfermedades por Almacenamiento Lisosomal/complicaciones , Enfermedades por Almacenamiento Lisosomal/enzimología , Datos de Secuencia Molecular , MianmarRESUMEN
G(M1) gangliosidosis is an inherited, fatal neurodegenerative disease caused by deficiency of lysosomal beta-d-galactosidase (EC 3.2.1.23) and consequent storage of undegraded G(M1) ganglioside. To characterize the genetic mutation responsible for feline G(M1) gangliosidosis, the normal sequence of feline beta-galactosidase cDNA first was defined. The feline beta-galactosidase open reading frame is 2010 base pairs, producing a protein of 669 amino acids. The putative signal sequence consists of amino acids 1-24 of the beta-galactosidase precursor protein, which contains seven potential N-linked glycosylation sites, as in the human protein. Overall sequence homology between feline and human beta-galactosidase is 74% for the open reading frame and 82% for the amino acid sequence. After normal beta-galactosidase was sequenced, the mutation responsible for feline G(M1) gangliosidosis was defined as a G to C substitution at position 1448 of the open reading frame, resulting in an amino acid substitution at arginine 483, known to cause G(M1) gangliosidosis in humans. Feline beta-galactosidase messenger RNA levels were normal in cerebral cortex, as determined by quantitative RT-PCR assays. Although enzymatic activity is severely reduced by the mutation, a full-length feline beta-galactosidase cDNA restored activity in transfected G(M1) fibroblasts to 18-times normal. beta-Galactosidase protein levels in G(M1) tissues were normal on Western blots, but immunofluorescence analysis demonstrated that the majority of mutant beta-galactosidase protein did not reach the lysosome. Additionally, G(M1) cat fibroblasts demonstrated increased expression of glucose-related protein 78/BiP and protein disulfide isomerase, suggesting that the unfolded protein response plays a role in pathogenesis of feline G(M1) gangliosidosis.
Asunto(s)
Enfermedades de los Gatos/genética , Gangliosidosis GM1/genética , Gangliosidosis GM1/veterinaria , Mutación Missense , beta-Galactosidasa/genética , Sustitución de Aminoácidos , Animales , Enfermedades de los Gatos/enzimología , Gatos , Línea Celular , Células Cultivadas , Clonación Molecular , Chaperón BiP del Retículo Endoplásmico , Fibroblastos/enzimología , Gangliosidosis GM1/enzimología , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Proteína Disulfuro Isomerasas/metabolismo , Transporte de Proteínas , beta-Galactosidasa/análisis , beta-Galactosidasa/metabolismoRESUMEN
To evaluate neural stem/progenitor cell (NPC) transplantation therapy in cat models of neurodegenerative diseases, we have isolated, expanded and characterized feline NPCs (fNPCs) from normal fetal cat brain. Feline NPCs responsive to both human epidermal growth factor (hEGF) and human fibroblast growth factor 2 (hFGF2) proliferated as neurospheres, which were able to differentiate to neurons and glial cells. The analysis of growth factors indicated that both hEGF and hFGF2 were required for proliferation of fNPCs. In contrast to the effect on human NPCs, human leukemia inhibitory factor (hLIF) enhanced differentiation of fNPCs. Expanded fNPCs were injected into the brains of normal adult cats. Immunohistochemical analysis showed that the majority of transplanted cells were located adjacent to the injection site and some fNPCs differentiated into neurons. The survival of transplanted fNPCs over time was monitored using non-invasive bioluminescent imaging technology. This study provided the first evidence of allotransplantation of fNPCs into feline CNS. Cats have heterogeneous genetic backgrounds and possess neurological diseases that closely resemble analogous human diseases. The characterization of fNPCs and exploration of non-invasive bioluminescent imaging to track transplanted cells in this study will allow evaluation of NPC transplantation therapy using feline models of human neurological diseases.
Asunto(s)
Trasplante de Tejido Encefálico/métodos , Diferenciación Celular/fisiología , Separación Celular/métodos , Neuronas/fisiología , Trasplante de Células Madre/métodos , Células Madre/fisiología , Animales , Biomarcadores , Encéfalo/citología , Encéfalo/fisiología , Encéfalo/cirugía , Encefalopatías/terapia , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Factor de Crecimiento Epidérmico/farmacología , Factor 2 de Crecimiento de Fibroblastos/farmacología , Supervivencia de Injerto/fisiología , Humanos , Factor Inhibidor de Leucemia/farmacología , Proteínas Luminiscentes , Modelos Animales , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/citología , Células Madre/citologíaAsunto(s)
Educación en Veterinaria , Medicina Veterinaria , Animales , Educación en Veterinaria/economía , Educación en Veterinaria/organización & administración , Educación en Veterinaria/normas , Guías como Asunto , Ganado , Mascotas , Medicina Veterinaria/organización & administración , Medicina Veterinaria/normasRESUMEN
Sandhoff disease (SD) is a lysosomal storage disorder characterized by the absence of hydrolytic enzyme ß-N-acetylhexosaminidase (Hex), which results in storage of GM2 ganglioside in neurons and unremitting neurodegeneration. Neuron loss initially affects fine motor skills, but rapidly progresses to loss of all body faculties, a vegetative state, and death by five years of age in humans. A well-established feline model of SD allows characterization of the disease in a large animal model and provides a means to test the safety and efficacy of therapeutic interventions before initiating clinical trials. In this study, we demonstrate a robust central nervous system (CNS) inflammatory response in feline SD, primarily marked by expansion and activation of the microglial cell population. Quantification of major histocompatibility complex II (MHC-II) labeling revealed significant up-regulation throughout the CNS with areas rich in white matter most severely affected. Expression of the leukocyte chemokine macrophage inflammatory protein-1 alpha (MIP-1α) was also up-regulated in the brain. SD cats were treated with intracranial delivery of adeno-associated viral (AAV) vectors expressing feline Hex, with a study endpoint 16weeks post treatment. AAV-mediated gene delivery repressed the expansion and activation of microglia and normalized MHC-II and MIP-1α levels. These data reiterate the profound inflammatory response in SD and show that neuroinflammation is abrogated after AAV-mediated restoration of enzymatic activity.
Asunto(s)
Encéfalo/inmunología , Terapia Genética , Enfermedad de Sandhoff/inmunología , Enfermedad de Sandhoff/terapia , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Astrocitos/inmunología , Astrocitos/patología , Encéfalo/patología , Gatos , Dependovirus/genética , Modelos Animales de Enfermedad , Genes MHC Clase II/fisiología , Vectores Genéticos , Gliosis/inmunología , Gliosis/patología , Gliosis/terapia , Inmunohistoquímica , Microglía/inmunología , Microglía/patología , Neuronas/inmunología , Neuronas/patología , Reacción en Cadena de la Polimerasa , Enfermedad de Sandhoff/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Conditionally replicative adenoviruses (CRAds) are engineered to replicate only in the target tissue and destroy tumor through their cytopathic effect. Because of restricted in vivo replication, it is difficult to model behavior of human Ad5-based vectors in animal subjects. To circumvent this, we developed a "syngeneic" canine CRAd based on canine adenovirus type 2 (CAV2) transcriptionally targeted to canine osteosarcoma (OS) cells. Canine OS is an outstanding model of human OS and is the most common primary bone tumor of dogs. Because conventional therapies extend median survival by approximately 6-8 months, canine OS remains a serious therapeutic challenge shared by human OS patients. Prior to using any CRAd for clinical trials in dogs, we sought to examine the effects and safety of administration of OS-targeted CAV2 CRAd in normal dogs. Short-term physiologic indicators of stress and shock, as well as gross and histological changes in a variety of tissues, were examined, and no major signs of virus-associated toxicity were noted. In addition, short-term immunosuppression did not increase CRAd toxicity. This study marks the first administration of a CRAd in an outbred large animal model and is an important milestone in the application of this modality in human patients.