Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Am Chem Soc ; 146(12): 8031-8042, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478877

RESUMEN

The effects of temperature and chemical environment on a pentanuclear cyanide-bridged, trigonal bipyramidal molecular paramagnet have been investigated. Using element- and oxidation state-specific near-ambient pressure X-ray photoemission spectroscopy (NAP-XPS) to probe charge transfer and second order, nonlinear vibrational spectroscopy, which is sensitive to symmetry changes based on charge (de)localization coupled with DFT, a detailed picture of environmental effects on charge-transfer-induced spin transitions is presented. The molecular cluster, Co3Fe2(tmphen)6(µ-CN)6(t-CN)6, abbrev. Co3Fe2, shows changes in electronic behavior depending on the chemical environment. NAP-XPS shows that temperature changes induce a metal-to-metal charge transfer (MMCT) in Co3Fe2 between a Co and Fe center, while cycling between ultrahigh vacuum and 2 mbar of water at constant temperature causes oxidation state changes not fully captured by the MMCT picture. Sum frequency generation vibrational spectroscopy (SFG-VS) probes the role of the cyanide ligand, which controls the electron (de)localization via the superexchange coupling. Spectral shifts and intensity changes indicate a change from a charge delocalized, Robin-Day class II/III high spin state to a charge-localized, class I low spin state consistent with DFT. In the presence of a H-bonding solvent, the complex adopts a localized electronic structure, while removal of the solvent delocalizes the charges and drives an MMCT. This change in Robin-Day classification of the complex as a function of chemical environment results in reversible switching of the dipole moment, analogous to molecular multiferroics. These results illustrate the important role of the chemical environment and solvation on underlying charge and spin transitions in this and related complexes.

2.
Acc Chem Res ; 55(6): 893-903, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35238529

RESUMEN

Extreme ultraviolet light sources based on high harmonic generation are enabling the development of novel spectroscopic methods to help advance the frontiers of ultrafast science and technology. In this Account, we discuss the development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy at near grazing incident reflection geometry and highlight recent applications of this method to study ultrafast electron dynamics at surfaces. Measuring core-to-valence transitions with broadband, femtosecond pulses of XUV light extends the benefits of X-ray absorption spectroscopy to a laboratory tabletop by providing a chemical fingerprint of materials, including the ability to resolve individual elements with sensitivity to oxidation state, spin state, carrier polarity, and coordination geometry. Combining this chemical state sensitivity with femtosecond time resolution provides new insight into the material properties that govern charge carrier dynamics in complex materials. It is well-known that surface dynamics differ significantly from equivalent processes in bulk materials and that charge separation, trapping, transport, and recombination occurring uniquely at surfaces govern the efficiency of numerous technologically relevant processes spanning photocatalysis, photovoltaics, and information storage and processing. Importantly, XUV-RA spectroscopy at near grazing angle is also surface sensitive with a probe depth of ∼3 nm, providing a new window into electronic and structural dynamics at surfaces and interfaces. Here we highlight the unique capabilities and recent applications of XUV-RA spectroscopy to study photoinduced surface dynamics in metal oxide semiconductors, including photocatalytic oxides (Fe2O3, Co3O4 NiO, and CuFeO2) as well as photoswitchable magnetic oxide (CoFe2O4). We first compare the ultrafast electron self-trapping rates via small polaron formation at the surface and bulk of Fe2O3 where we note that the energetics and kinetics of this process differ significantly at the surface. Additionally, we demonstrate the ability to systematically tune this kinetics by molecular functionalization, thereby providing a route to control carrier transport at surfaces. We also measure the spectral signatures of charge transfer excitons with site specific localization of both electrons and holes in a series of transition metal oxide semiconductors (Fe2O3, NiO, Co3O4). The presence of valence band holes probed at the oxygen L1-edge confirms a direct relationship between the metal-oxygen bond covalency and water oxidation efficiency. For a mixed metal oxide CuFeO2 in the layered delafossite structure, XUV-RA reveals that the sub-picosecond hole thermalization from O 2p to Cu 3d states of CuFeO2 leads to the spatial separation of electrons and holes, resulting in exceptional photocatalytic performance for H2 evolution and CO2 reduction of this material. Finally, we provide an example to show the ability of XUV-RA to probe spin state specific dynamics in a photoswitchable ferrimagnet, cobalt ferrite (CoFe2O4). This study provides a detailed understating of ultrafast spin switching in a complex magnetic material with site-specific resolution. In summary, the applications of XUV-RA spectroscopy demonstrated here illustrate the current abilities and future promise of this method to extend molecule-level understanding from well-defined photochemical complexes to complex materials so that charge and spin dynamics at surfaces can be tuned with the precision of molecular photochemistry.


Asunto(s)
Electrones , Agua , Cobalto , Cinética , Óxidos , Espectroscopía de Absorción de Rayos X
3.
J Am Chem Soc ; 144(7): 2829-2840, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35137579

RESUMEN

To achieve high selectivity in enzyme catalysis, nature carefully controls both the catalyst active site and the pocket or environment that mediates access and the geometry of a reactant. Despite the many advantages of heterogeneous catalysis, active sites on a surface are rarely defined with atomic precision, making it difficult to control reaction selectivity with the molecular precision of homogeneous systems. In colloidal nanoparticle synthesis, structural control is accomplished using a surface ligand or capping layer that stabilizes a specific particle morphology and prevents nanoparticle aggregation. Usually, these surface ligands are considered detrimental for catalysis because they occupy otherwise active surface sites. However, a number of examples have shown that surface ligands can play a beneficial role in defining the catalytic environment and enhancing performance by a variety of mechanisms. This perspective summarizes recent advances and opportunities using surface ligands to enhance the performance of nanocatalysts for electrochemical CO2 reduction. Several mechanisms are discussed, including selective permeability, modulating interfacial solvation structure and electric fields, chemical activation, and templating active site selection. These examples inform strategies and point to emerging opportunities to design nanocatalysts toward molecular level control of electrochemical CO2 conversion.

4.
Phys Chem Chem Phys ; 23(20): 11764-11773, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33982714

RESUMEN

Ni based catalysts have been widely studied for H2 production due to the ability of Ni to break C-C and C-H bonds. In this work, we study inverse catalysts prepared by well-controlled sub-monolayer deposition of CeO2 nanocubes onto Ni thin films for ethanol steam reforming (ESR). Results show that controlling the coverage of CeO2 nanocubes on Ni enhances H2 production by more than an order of magnitude compared to pure Ni. Contrary to the idea that C deposits must be continuously oxidized for sustained H2 production, the surface of the most active catalysts show significant C deposition, yet no deactivation is observed. HAADF-STEM analysis reveals the formation of carbon filaments (CFILs), which propel Ni particles upward at the filament tips via a catalytic tip growth mechanism, resulting in a Ni@CFIL active phase for ESR. Near-ambient pressure XPS indicates that the Ni@CFIL active phase forms as a result of C gradients at the interface between regions of pure Ni metal and domains of closely packed CeO2 nanocubes. These results show that the mesoscale morphology of deposited CeO2 nanocubes is responsible for templating the formation of a Ni@CFIL catalyst, which resists deactivation leading to highly active and stable H2 production from ethanol.

5.
J Phys Chem A ; 124(39): 8057-8064, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32846085

RESUMEN

Here we present plasmon-resonant vibrational sum frequency generation spectroscopy for use in electrochemical measurements. Using surface plasmon resonance we couple light through a CaF2 prism to Au films of >50 nm in order to reach the buried Au/electrolyte interface. The approach enables us to use bulk electrolyte, and high current densities (>1 mA/cm2), and therefore is suitable to probe active intermediates under relevant electrochemical reaction conditions. Fresnel factor modeling of the plasmon resonance for a three layer system (CaF2/Au/electrolyte) shows good agreement with experimental data. Off-angle momentum-matching to the surface plasmon resonance allows us to measure functional groups (-CH, -CD, -CN, -NO2) across a wide range of infrared frequencies by simply scanning the infrared wavelength without any angular realignment. Additionally we report a detection limit <1% of a monolayer for the Au/electrolyte interface. Using this method we observe an active intermediate during CO2 reduction on Au at catalytic currents. Consequently, we believe that this method will provide mechanistic understanding of electrochemical reactions.

6.
J Am Chem Soc ; 141(34): 13525-13535, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31345028

RESUMEN

Aqueous solutions of FeCl3 have been widely studied to shed light on a number of processes from dissolution, mineralization, biology, electrocatalysis, corrosion, to microbial biomineralization. Yet there are little to no molecular level studies of the air-liquid FeCl3 interface. Here, both aqueous and glycerol FeCl3 solution surfaces are investigated with polarized vibrational sum frequency generation (SFG) spectroscopy. We also present the first ever extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy measurements of solvated ions and complexes at a solution interface, and observe with both X-ray photoelectron spectroscopy (XPS) and XUV-RA the existence of Fe(III) at the surface and in the near surface regions of glycerol FeCl3 solutions, where glycerol is used as a high vacuum compatible proxy for water. XPS showed Cl- and Fe(III) species with significant Fe(III) interfacial enrichment. In aqueous solutions, an electrical double layer (EDL) of Cl- and Fe(III) species at 0.5 m FeCl3 concentration is observed as evidenced from an enhancement of molecular ordering of water dipoles, consistent with the observed behavior at the glycerol surface. At higher concentrations in water, the EDL appears to be substantially repressed, indicative of further Fe(III) complex enrichment and dominance of a centrosymmetric Fe(III) species that is surface active. In addition, a significant vibrational red-shift of the dangling OH from the water molecules that straddle the air-water interface reveals that the second solvation shell of the surface active Fe(III) complex permeates the topmost layer of the aqueous interface.

7.
J Chem Phys ; 151(10): 104701, 2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31521099

RESUMEN

Small polaron formation is known to limit the photocatalytic charge transport efficiency of hematite via ultrafast carrier self-trapping. While small polaron formation is known to occur in bulk hematite, a complete description of surface polaron formation in this material is not fully understood. Theoretical predictions indicate that the kinetics and thermodynamics of surface polaron formation are different than those in bulk. However, to test these predictions requires the ability to experimentally differentiate polaron formation dynamics at the surface. Near grazing angle extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy is surface sensitive and provides element and oxidation state specific information on a femtosecond time scale. Using XUV-RA, we provide a systematic comparison between surface and bulk polaron formation kinetics and energetics in photoexcited hematite. We find that the rate of surface polaron formation (250 ± 40 fs) is about three times slower than bulk polaron formation (90 ± 5 fs) in photoexcited hematite. Additionally, we show that the surface polaron formation rate can be systematically tuned by surface molecular functionalization. Within the framework of a Marcus type model, the kinetics and energetics of polaron formation are discussed. The slower polaron formation rate observed at the surface is found to result from a greater lattice reorganization relative to bulk hematite, while surface functionalization is shown to tune both the lattice reorganization as well as the polaron stabilization energies. The ability to tune the kinetics and energetics of polaron formation and hopping by molecular functionalization provides the opportunity to synthetically control electron transport in hematite.

8.
Nano Lett ; 18(2): 1228-1233, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29368513

RESUMEN

The ability to observe charge localization in photocatalytic materials on the ultrafast time scale promises to reveal important correlations between excited state electronic structure and photochemical energy conversion. Of particular interest is the ability to determine hole localization in the hybridized valence band of transition metal oxide semiconductors. Using femtosecond extreme ultraviolet reflection absorption (XUV-RA) spectroscopy we directly observe the formation of photoexcited electrons and holes in Fe2O3, Co3O4, and NiO occurring within the 100 fs instrument response. In each material, holes localize to the O 2p valence band states as probed at the O L1-edge, while electrons localize to metal 3d conduction band states on this same time scale as probed at the metal M2,3-edge. Chemical shifts at the O L1-edge enable unambiguous comparison of metal-oxygen (M-O) bond covalency. Pump flux dependent measurements show that the exciton radius is on the order of a single M-O bond length, revealing a highly localized nature of exciton in each metal oxide studied.

9.
Phys Chem Chem Phys ; 20(38): 24545-24552, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30202842

RESUMEN

NiO is widely utilized as a hole transport layer in solar energy devices where light absorption in a photoactive layer is followed by charge separation and hole injection into a NiO collection layer. Due to the complex electronic structure of the hybridized valence band in NiO, the chemical nature of the hole acceptor state has remained an open question, despite the fact that hole localization in this material significantly influences device efficiency. To comment on this, we present results of ultrafast charge carrier dynamics in a NiO based model heterojunction (Fe2O3/NiO) using extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. Element specific XUV-RA spectroscopy demonstrates the formation of transient Ni3+ within 10 ps following selective photoexcitation of the underlying Fe2O3 substrate. This indicates that hole transfer in this system occurs to NiO valence band states composed of significant Ni 3d character. Additionally, we show that this hole injection process proceeds via a two-step sequential mechanism where fast, field-driven exciton dissociation occurs in Fe2O3 in 680 ± 60 fs, followed by subsequent hole injection to NiO in 9.2 ± 2.9 ps. These results reveal the chemical nature of the hole acceptor state in widely used NiO hole transport layers and provides a direct observation of exciton dissociation and interfacial hole transfer in this model system.

10.
J Chem Phys ; 153(5): 050401, 2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770913
11.
Nano Lett ; 14(10): 5883-90, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25222441

RESUMEN

Charge carrier dynamics in Co3O4 thin films are observed using high harmonic generation transient absorption spectroscopy at the Co M2,3 edge. Results reveal that photoexcited Co3O4 decays to the ground state in 600 ± 40 ps in liquid methanol compared to 1.9 ± 0.3 ns in vacuum. Kinetic analysis suggests that surface-mediated relaxation of photoexcited Co3O4 may be the result of hole transfer from Co3O4 followed by carrier recombination at the Co3O4-methanol interface.

12.
Nano Lett ; 13(9): 4469-74, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23924204

RESUMEN

Two times higher activity and three times higher stability in methanol oxidation reaction, a 0.12 V negative shift of the CO oxidation peak potential, and a 0.07 V positive shift of the oxygen reaction potential compared to Pt nanoparticles on pristine TiO2 support were achieved by tuning the electronic structure of the titanium oxide support of Pt nanoparticle catalysts. This was accomplished by adding oxygen vacancies or doping with fluorine. Experimental trends are interpreted in the context of an electronic structure model, showing an improvement in electrochemical activity when the Fermi level of the support material in Pt/TiOx systems is close to the Pt Fermi level and the redox potential of the reaction. The present approach provides guidance for the selection of the support material of Pt/TiOx systems and may be applied to other metal-oxide support materials, thus having direct implications in the design and optimization of fuel cell catalyst supports.

13.
Angew Chem Int Ed Engl ; 53(13): 3405-8, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24554309

RESUMEN

The hydrogenation of crotonaldehyde in the presence of supported platinum nanoparticles was used to determine how the interaction between the metal particles and their support can control catalytic performance. Using gas-phase catalytic reaction studies and in situ sum-frequency generation vibrational spectroscopy (SFG) to study Pt/TiO2 and Pt/SiO2 catalysts, a unique reaction pathway was identified for Pt/TiO2, which selectively produces alcohol products. The catalytic and spectroscopic data obtained for the Pt/SiO2 catalyst shows that SiO2 has no active role in this reaction. SFG spectra obtained for the Pt/TiO2 catalyst indicate the presence of a crotyl-oxy surface intermediate. By adsorption through the aldehyde oxygen atom to an O-vacancy site on the TiO2 surface, the C=O bond of crotonaldehyde is activated, by charge transfer, for hydrogenation. This intermediate reacts with spillover H provided by the Pt to produce crotyl alcohol.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39052931

RESUMEN

Cu2O, CuO, and mixed phase Cu2O/CuO represent promising candidates for photoelectrochemical H2 evolution due to their strong visible light absorption, earth-abundance, and chemical stability. However, the photoelectrochemical efficiency in these materials remains far below the theoretical limit, largely due to poorly understood surface electron dynamics. These dynamics depend on defect states, such as Cu atom vacancies and phase boundaries, which control electron trapping, charge carrier separation, and recombination. In this work, we study the photoinduced electron and hole dynamics at the surface of various Cu oxides using ultrafast extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. In Cu2O we find that photoexcitation occurs as electron promotion from primarily Cu 3d valence band to Cu 4s conduction band states compared to O 2p valence band to Cu 4s conduction band states in CuO. In catalysts with a significant concentration of Cu vacancies, we observe fast electron trapping to the Cu 3d defect band occurring in less than 100 fs. In contrast, photoexcited electrons in phase pure CuO do not trap to midgap states; rather these electrons form small polarons within approximately 500 fs. Photoelectrochemical measurements of these catalysts show that Cu vacancy-mediated electron trapping correlates with a significant loss of photocurrent. Together, these results provide a detailed picture of the defect states and associated ultrafast carrier dynamics that govern the photocatalytic efficiency in widely studied Cu2O and CuO photocatalysts.

15.
Chem Sci ; 15(9): 3300-3310, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38425509

RESUMEN

This work presents a spectroscopic and photocatalytic comparison of water splitting using yttrium iron garnet (Y3Fe5O12, YIG) and hematite (α-Fe2O3) photoanodes. Despite similar electronic structures, YIG significantly outperforms widely studied hematite, displaying more than an order of magnitude increase in photocurrent density. Probing the charge and spin dynamics by ultrafast, surface-sensitive XUV spectroscopy reveals that the enhanced performance arises from (1) reduced polaron formation in YIG compared to hematite and (2) an intrinsic spin polarization of catalytic photocurrents in YIG. Ultrafast XUV measurements show a reduction in the formation of surface electron polarons compared to hematite due to site-dependent electron-phonon coupling. This leads to spin polarized photocurrents in YIG where efficient charge separation occurs on the Td sub-lattice compared to fast trapping and electron/hole pair recombination on the Oh sub-lattice. These lattice-dependent dynamics result in a long-lived spin aligned hole population at the YIG surface, which is directly observed using XUV magnetic circular dichroism. Comparison of the Fe M2,3 and O L1-edges show that spin aligned holes are hybridized between O 2p and Fe 3d valence band states, and these holes are responsible for highly efficient, spin selective water oxidation by YIG. Together, these results point to YIG as a new platform for highly efficient, spin selective photocatalysis.

16.
Nano Lett ; 12(5): 2554-8, 2012 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-22463103

RESUMEN

Using a Pt/Si catalytic nanodiode, we externally control the rate of CO oxidation on a Pt nanofilm. The catalytic reaction can be turned on and off by alternating between bias states of the device. Additionally, the reaction rate is sensitive to photocurrent induced by visible light. The effects of both bias and light show that negative charge on the Pt increases catalytic activity, while positive charge on the Pt decreases catalytic activity for CO oxidation.

17.
Chem Sci ; 14(17): 4523-4531, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37152268

RESUMEN

The electrochemical conversion of CO2 represents a promising way to simultaneously reduce CO2 emissions and store chemical energy. However, the competition between CO2 reduction (CO2R) and the H2 evolution reaction (HER) hinders the efficient conversion of CO2 in aqueous solution. In water, CO2 is in dynamic equilibrium with H2CO3, HCO3 -, and CO3 2-. While CO2 and its associated carbonate species represent carbon sources for CO2R, recent studies by Koper and co-workers indicate that H2CO3 and HCO3 - also act as proton sources during HER (J. Am. Chem. Soc. 2020, 142, 4154-4161, ACS Catal. 2021, 11, 4936-4945, J. Catal. 2022, 405, 346-354), which can favorably compete with water at certain potentials. However, accurately distinguishing between competing reaction mechanisms as a function of potential requires direct observation of the non-equilibrium product distribution present at the electrode/electrolyte interface. In this study, we employ vibrational sum frequency generation (VSFG) spectroscopy to directly probe the interfacial species produced during competing HER/CO2R on Au electrodes. The vibrational spectra at the Ar-purged Na2SO4 solution/Au interface, where only HER occurs, show a strong peak around 3650 cm-1, which appears at the HER onset potential and is assigned to OH-. Notably, this species is absent for the CO2-purged Na2SO4 solution/gold interface; instead, a peak around 3400 cm-1 appears at catalytic potential, which is assigned to CO3 2- in the electrochemical double layer. These spectral reporters allow us to differentiate between HER mechanisms based on water reduction (OH- product) and HCO3 - reduction (CO3 2- product). Monitoring the relative intensities of these features as a function of potential in NaHCO3 electrolyte reveals that the proton donor switches from HCO3 - at low overpotential to H2O at higher overpotential. This work represents the first direct detection of OH- on a metal electrode produced during HER and provides important insights into the surface reactions that mediate selectivity between HER and CO2R in aqueous solution.

18.
J Phys Chem Lett ; 14(15): 3643-3650, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37027816

RESUMEN

CuO is often employed as a photocathode for H2 evolution and CO2 reduction, but observed efficiency is still far below the theoretical limit. To bridge the gap requires understanding the CuO electronic structure; however, computational efforts lack consensus on the orbital character of the photoexcited electron. In this study, we measure the femtosecond XANES spectra of CuO at the Cu M2,3 and O L1 edges to track the element-specific dynamics of electrons and holes. Results show that photoexcitation represents an O 2p to Cu 4s charge transfer state indicating the conduction band electron has primarily Cu 4s character. We also observe ultrafast mixing of Cu 3d and 4s conduction band states mediated by coherent phonons, with Cu 3d character of the photoelectron reaching a maximum of 16%. This is the first observation of the photoexcited redox state in CuO, and results provide a benchmark for theory where electronic structure modeling still relies heavily on model-dependent parametrization.

19.
J Am Chem Soc ; 134(34): 14208-16, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22871058

RESUMEN

This work describes a molecular-level investigation of strong metal-support interactions (SMSI) in Pt/TiO(2) catalysts using sum frequency generation (SFG) vibrational spectroscopy. This is the first time that SFG has been used to probe the highly selective oxide-metal interface during catalytic reaction, and the results demonstrate that charge transfer from TiO(2) on a Pt/TiO(2) catalyst controls the product distribution of furfuraldehyde hydrogenation by an acid-base mechanism. Pt nanoparticles supported on TiO(2) and SiO(2) are used as catalysts for furfuraldehyde hydrogenation. As synthesized, the Pt nanoparticles are encapsulated in a layer of poly(vinylpyrrolidone) (PVP). The presence of PVP prevents interaction of the Pt nanoparticles with their support, so identical turnover rates and reaction selectivity is observed regardless of the supporting oxide. However, removal of the PVP with UV light results in a 50-fold enhancement in the formation of furfuryl alcohol by Pt supported on TiO(2), while no change is observed for the kinetics of Pt supported on SiO(2). SFG vibrational spectroscopy reveals that a furfuryl-oxy intermediate forms on TiO(2) as a result of a charge transfer interaction. This furfuryl-oxy intermediate is a highly active and selective precursor to furfuryl alcohol, and spectral analysis shows that the Pt/TiO(2) interface is required primarily for H spillover. Density functional calculations predict that O-vacancies on the TiO(2) surface activate the formation of the furfuryl-oxy intermediate via an electron transfer to furfuraldehyde, drawing a strong analogy between SMSI and acid-base catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA