Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biophys J ; 122(13): 2609-2622, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37183398

RESUMEN

The mechanical interaction between cells and the extracellular matrix (ECM) is fundamental to coordinate collective cell behavior in tissues. Relating individual cell-level mechanics to tissue-scale collective behavior is a challenge that cell-based models such as the cellular Potts model (CPM) are well-positioned to address. These models generally represent the ECM with mean-field approaches, which assume substrate homogeneity. This assumption breaks down with fibrous ECM, which has nontrivial structure and mechanics. Here, we extend the CPM with a bead-spring model of ECM fiber networks modeled using molecular dynamics. We model a contractile cell pulling with discrete focal adhesion-like sites on the fiber network and demonstrate agreement with experimental spatiotemporal fiber densification and displacement. We show that at high network cross-linking, contractile cell forces propagate over at least eight cell diameters, decaying with distance with power law exponent n= 0.35 - 0.65 typical of viscoelastic ECMs. Further, we use in silico atomic force microscopy to measure local cell-induced network stiffening consistent with experiments. Our model lays the foundation for investigating how local and long-ranged cell-ECM mechanobiology contributes to multicellular morphogenesis.


Asunto(s)
Matriz Extracelular , Adhesiones Focales , Matriz Extracelular/química , Simulación de Dinámica Molecular , Microscopía de Fuerza Atómica , Modelos Biológicos
2.
J Math Biol ; 85(4): 41, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163567

RESUMEN

We analyze an 'up-the-gradient' model for the formation of transport channels of the phytohormone auxin, through auxin-mediated polarization of the PIN1 auxin transporter. We show that this model admits a family of travelling wave solutions that is parameterized by the height of the auxin-pulse. We uncover scaling relations for the speed and width of these waves and verify these rigorous results with numerical computations. In addition, we provide explicit expressions for the leading-order wave profiles, which allows the influence of the biological parameters in the problem to be readily identified. Our proofs are based on a generalization of the scaling principle developed by Friesecke and Pego to construct pulse solutions to the classic Fermi-Pasta-Ulam-Tsingou model, which describes a one-dimensional chain of coupled nonlinear springs.


Asunto(s)
Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Transporte Biológico , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana , Reguladores del Crecimiento de las Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA