Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 385(3): 214-221, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36997325

RESUMEN

Diabetic retinopathy (DR) is a leading cause of vision loss in working-age adults. Despite an established standard of care for advanced forms of DR, some patients continue to lose vision after treatment. This may be due to the development of diabetic macular ischemia (DMI), which has no approved treatment. Neuropilin-1 (Nrp-1) is a coreceptor with two ligand-binding domains, with semaphorin-3A (Sema3A) binding to the A-domain and vascular endothelial growth factor-A (VEGF-A) binding to the B-domain. Sema3A directs a subset of neuronal growth cones as well as blood vessel growth by repulsion; when bound to Nrp-1, VEGF-A mediates vascular permeability and angiogenesis. Modulating Nrp-1 could therefore address multiple complications arising from DR, such as diabetic macular edema (DME) and DMI. BI-Y is a monoclonal antibody that binds to the Nrp-1 A-domain, antagonizing the effects of the ligand Sema3A and inhibiting VEGF-A-induced vascular permeability. This series of in vitro and in vivo studies examined the binding kinetics of BI-Y to Nrp-1 with and without VEGF-A165, the effect of BI-Y on Sema3A-induced cytoskeletal collapse, the effect of BI-Y on VEGF- A165-induced angiogenesis, neovascularization, cell integrity loss and permeability, and retinal revascularization. The data show that BI-Y binds to Nrp-1 and inhibits Sema3A-induced cytoskeletal collapse in vitro, may enhance revascularization of ischemic areas in an oxygen-induced retinopathy mouse model, and prevents VEGF-A-induced retinal hyperpermeability in rats. However, BI-Y does not interfere with VEGF-A-dependent choroidal neovascularization. These results support further investigation of BI-Y as a potential treatment for DMI and DME. SIGNIFICANCE STATEMENT: Diabetic macular ischemia (DMI) is a complication of diabetic retinopathy (DR) with no approved pharmacological treatment. Diabetic macular edema (DME) commonly co-occurs with DMI in patients with DR. This series of preclinical studies in mouse and rat models shows that neuropilin-1 antagonist BI-Y may enhance the revascularization of ischemic areas and prevents vascular endothelial growth factor-A (VEGF-A)-induced retinal hyperpermeability without affecting VEGF-A-dependent choroidal neovascularization; thus, BI-Y may be of interest as a potential treatment for patients with DR.


Asunto(s)
Neovascularización Coroidal , Retinopatía Diabética , Edema Macular , Enfermedades de la Retina , Animales , Ratones , Ratas , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/metabolismo , Ligandos , Edema Macular/tratamiento farmacológico , Edema Macular/metabolismo , Neuropilina-1/antagonistas & inhibidores , Neuropilina-1/metabolismo , Roedores/metabolismo , Semaforina-3A , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
Invest Ophthalmol Vis Sci ; 63(8): 14, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35822950

RESUMEN

Purpose: Semaphorin 3A (Sema3A) is a promising therapeutic target for macular edema in age-related macular degeneration, diabetic retinopathy, and retinal vein occlusion (RVO). Anti-vascular endothelial growth factors (anti-VEGFs) are the current standard of care for many retinal diseases. This study investigated the Sema3A neutralizing antibody BI-X and/or anti-VEGF therapy (aflibercept) in an RVO mouse model. Treatment efficacy was examined and grouped by timing subsequent to the RVO mouse model induction: efficacy against the onset of intraretinal edema 1 day postinduction and protective effects at 7 days postinduction. Methods: We examined the changes in expression of Sema3A in the retina of an RVO mouse model. In addition, changes in expression of tumor necrosis factor (TNF)-α and semaphorin-related proteins (neuropilin-1 and plexin A1) in the retina upon treatment were analyzed by Western blotting. The effects of BI-X and/or aflibercept were evaluated using measures of retinal edema, blood flow, and thinning of the inner nuclear layer. Results: Induction of vein occlusion in the RVO mouse model significantly increased Sema3A expression in the retina, particularly in the inner nuclear layer. BI-X was effective as a monotherapy and in combination with anti-VEGF therapy, demonstrating a beneficial effect on intraretinal edema and retinal blood flow. Moreover, in the RVO mouse model, BI-X monotherapy normalized the changes in expression of TNF-α and semaphorin-related proteins. Conclusions: These findings support targeting Sema3A to treat intraretinal edema and retinal ischemia.


Asunto(s)
Edema Macular , Enfermedades de la Retina , Oclusión de la Vena Retiniana , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Modelos Animales de Enfermedad , Inyecciones Intravítreas , Edema Macular/tratamiento farmacológico , Masculino , Ratones , Retina/patología , Enfermedades de la Retina/patología , Oclusión de la Vena Retiniana/metabolismo , Semaforina-3A/metabolismo
3.
Transl Vis Sci Technol ; 11(5): 18, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35579886

RESUMEN

Purpose: Inflammation is implicated in the etiology of diverse retinopathies including uveitis, age-related macular degeneration or diabetic retinopathy. Tumor necrosis factor alpha (TNF-α) is a well-known proinflammatory cytokine that is described as a biomarker for inflammation in diverse retinopathies and therefore emerged as an interesting target to treat inflammation in the eye by neutralizing anti-TNF-α antibodies. Methods: Recently, we have demonstrated that Adeno-associated virus (AAV)-mediated expression of human TNF-α in the murine eye induces retinal inflammation including vasculitis and fibrosis, thereby mimicking human disease-relevant pathologies. In a proof-of-mechanism study, we now tested whether AAV-TNF-α induced pathologies can be reversed by neutralizing TNF-α antibody treatment. Results: Strikingly, a single intravitreal injection of the TNF-α antibody golimumab reduced AAV-TNF-α-induced retinal inflammation and retinal thickening. Furthermore, AAV-TNF-α-mediated impaired retinal function was partially rescued by golimumab as revealed by electroretinography recordings. Finally, to study TNF-α-induced vasculitis in human in vitro cell culture assays, we established a monocyte-to-endothelium adhesion co-culture system. Indeed, also in vitro TNF-α induced monocyte adhesion to human retinal endothelial cells, which was prevented by golimumab. Conclusions: Overall, our study describes valuable in vitro and in vivo approaches to study the function of TNF-α in retinal inflammation and demonstrated a preclinical proof-of-mechanism treatment with golimumab. Translational Relevance: The AAV-based model expressing human TNF-α allows us to investigate TNF-α-driven pathologies supporting research in mechanisms of retinal inflammation.


Asunto(s)
Enfermedades de la Retina , Factor de Necrosis Tumoral alfa , Vasculitis , Animales , Dependovirus/genética , Células Endoteliales/patología , Humanos , Inflamación , Ratones , Ratones Endogámicos C57BL , Enfermedades de la Retina/etiología , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología , Inhibidores del Factor de Necrosis Tumoral/farmacología , Factor de Necrosis Tumoral alfa/biosíntesis , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Vasculitis/etiología , Vasculitis/patología
4.
Transl Vis Sci Technol ; 11(6): 17, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35727188

RESUMEN

Purpose: Semaphorin 3A (Sema3A) is an axonal guidance molecule that inhibits angiogenesis by vasorepulsion and blocks revascularization in the ischemic retina. BI-X is an intravitreal anti-Sema3A agent under clinical investigation in patients with proliferative diabetic retinopathy (PDR) and diabetic macular ischemia (DMI). Methods: Surface plasmon resonance was used to determine binding affinity of BI-X to human and murine Sema3A. In vitro, human retinal microvascular endothelial cells (HRMECs) were used to assess effects of BI-X on cell permeability and cytoskeletal collapse induced by Sema3A. In vivo, intravitreal BI-X or an anti-trinitrophenol control antibody was administered in both eyes in mice with oxygen-induced retinopathy (OIR). Retinal flat mounts were prepared, and avascular area and tip cell density were determined using confocal laser-scanning microscopy. Results: Dissociation constants for BI-X binding to human and murine Sema3A were 29 pM and 27 pM, respectively. In vitro, BI-X prevented HRMEC permeability and cytoskeletal collapse induced by Sema3A. In vivo, BI-X increased tip cell density by 33% (P < 0.001) and reduced avascular area by 12% (not significant). A significant negative correlation was evident between avascular area and tip cell density (r2 = 0.4205, P < 0.0001). Conclusions: BI-X binds to human Sema3A with picomolar affinity and prevents cell permeability and cytoskeletal collapse in HRMECs. BI-X also enhances revascularization in mice with OIR. Translational Relevance: BI-X is a potent inhibitor of human Sema3A that improves revascularization in a murine model of OIR; BI-X is currently being investigated in patients with laser-treated PDR and DMI.


Asunto(s)
Citoesqueleto , Retinopatía Diabética , Enfermedades de la Retina , Animales , Recuento de Células , Permeabilidad de la Membrana Celular , Retinopatía Diabética/tratamiento farmacológico , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Oxígeno/metabolismo , Oxígeno/toxicidad , Permeabilidad , Retina , Semaforina-3A/metabolismo , Semaforina-3A/farmacología
5.
Sci Rep ; 12(1): 19395, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371417

RESUMEN

Retinopathies are multifactorial diseases with complex pathologies that eventually lead to vision loss. Animal models facilitate the understanding of the pathophysiology and identification of novel treatment options. However, each animal model reflects only specific disease aspects and understanding of the specific molecular changes in most disease models is limited. Here, we conducted transcriptome analysis of murine ocular tissue transduced with recombinant Adeno-associated viruses (AAVs) expressing either human VEGF-A, TNF-α, or IL-6. VEGF expression led to a distinct regulation of extracellular matrix (ECM)-associated genes. In contrast, both TNF-α and IL-6 led to more comparable gene expression changes in interleukin signaling, and the complement cascade, with TNF-α-induced changes being more pronounced. Furthermore, integration of single cell RNA-Sequencing data suggested an increase of endothelial cell-specific marker genes by VEGF, while TNF-α expression increased the expression T-cell markers. Both TNF-α and IL-6 expression led to an increase in macrophage markers. Finally, transcriptomic changes in AAV-VEGF treated mice largely overlapped with gene expression changes observed in the oxygen-induced retinopathy model, especially regarding ECM components and endothelial cell-specific gene expression. Altogether, our study represents a valuable investigation of gene expression changes induced by VEGF, TNF-α, and IL-6 and will aid researchers in selecting appropriate animal models for retinopathies based on their agreement with the human pathophysiology.


Asunto(s)
Enfermedades de la Retina , Factor de Necrosis Tumoral alfa , Humanos , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Interleucina-6/genética , Perfilación de la Expresión Génica
6.
Front Cell Dev Biol ; 10: 910040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36092714

RESUMEN

The therapeutic potential of pluripotent stem cells is great as they promise to usher in a new era of medicine where cells or organs may be prescribed to replace dysfunctional tissue. At the forefront are efforts in the eye to develop this technology as it lends itself to in vivo monitoring and sophisticated non-invasive imaging modalities. In the retina, retinal pigment epithelium (RPE) is the most promising replacement cell as it has a single layer, is relatively simple to transplant, and is associated with several eye diseases. However, after transplantation, the cells may transform and cause complications. This transformation may be partially due to incomplete maturation. With the goal of learning how to mature RPE, we compared induced pluripotent stem cell-derived RPE (iPSC-RPE) cells with adult human primary RPE (ahRPE) cells and the immortalized human ARPE-19 line. We cultured ARPE-19, iPSC-RPE, and ahRPE cells for one month, and evaluated morphology, RPE marker staining, and transepithelial electrical resistance (TEER) as quality control indicators. We then isolated RNA for bulk RNA-sequencing and DNA for genotyping. We genotyped ahRPE lines for the top age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR) risk allele polymorphisms. Transcriptome data verified that both adult and iPSC-RPE exhibit similar RPE gene expression signatures, significantly higher than ARPE-19. In addition, in iPSC-RPE, genes relating to stem cell maintenance, retina development, and muscle contraction were significantly upregulated compared to ahRPE. We compared ahRPE to iPSC-RPE in a model of epithelial-mesenchymal transition (EMT) and observed an increased sensitivity of iPSC-RPE to producing contractile aggregates in vitro which resembles incident reports upon transplantation. P38 inhibition was capable of inhibiting iPSC-RPE-derived aggregates. In summary, we find that the transcriptomic signature of iPSC-RPE conveys an immature RPE state which may be ameliorated by targeting "immature" gene regulatory networks.

7.
Mol Pharmacol ; 79(2): 262-9, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21081645

RESUMEN

Rearrangement of transmembrane domains (TMs) 3 and 5 after agonist binding is necessary for stabilization of the active state of class A G protein-coupled receptors (GPCRs). Using site-directed mutagenesis and functional assays, we provide the first evidence that the TAS(I/V) sequence motif at positions 3.37 to 3.40, highly conserved in aminergic receptors, plays a key role in the activation of the histamine H1 receptor. By combining these data with structural information from X-ray crystallography and computational modeling, we suggest that Thr(3.37) interacts with TM5, stabilizing the inactive state of the receptor, whereas the hydrophobic side chain at position 3.40, highly conserved in the whole class A GPCR family, facilitates the reorientation of TM5. We propose that the structural change of TM5 during the process of GPCR activation involves a local Pro(5.50)-induced unwinding of the helix, acting as a hinge, and the highly conserved hydrophobic Ile(3.40) side chain, acting as a pivot.


Asunto(s)
Proteínas de la Membrana/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células COS , Chlorocebus aethiops , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica , Receptores Acoplados a Proteínas G/genética
8.
ChemMedChem ; 16(4): 630-639, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33030297

RESUMEN

Drugs targeting type 4 dipeptidyl peptidase (DPP-4) are beneficial for glycemic control, whereas fibroblast activation protein alpha (FAP-α) is a potential target for cancer therapies. Unlike other gliptins, linagliptin displays FAP inhibition. We compared biophysical and structural characteristics of linagliptin binding to DPP-4 and FAP to better understand what differentiates linagliptin from other gliptins. Linagliptin exhibited high binding affinity (KD ) and a slow off-rate (koff ) when dissociating from DPP-4 (KD 6.6 pM; koff 5.1×10-5  s-1 ), and weaker inhibitory potency to FAP (KD 301 nM; koff >1 s-1 ). Co-structures of linagliptin with DPP-4 or FAP were similar except for one second shell amino acid difference: Asp663 (DPP-4) and Ala657 (FAP). pH dependence of enzymatic activities and binding of linagliptin for DPP-4 and FAP are dependent on this single amino acid difference. While linagliptin may not display any anticancer activity at therapeutic doses, our findings may guide future studies for the development of optimized inhibitors.


Asunto(s)
Aminoácidos/análisis , Dipeptidil Peptidasa 4/metabolismo , Linagliptina/farmacología , Proteínas de la Membrana/antagonistas & inhibidores , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Endopeptidasas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Cinética , Linagliptina/química , Proteínas de la Membrana/metabolismo , Estructura Molecular , Relación Estructura-Actividad
9.
Transl Vis Sci Technol ; 10(11): 15, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34520511

RESUMEN

Purpose: Retinopathies display complex pathologies, including vasculopathies, inflammation, and fibrosis, leading ultimately to visual impairment. However, animal models accurately reflecting these pathologies are lacking. In this study, we evaluate the suitability of using Adeno-associated virus (AAV)-mediated long-term expression of cytokines to establish retinal pathology in the murine retina. Methods: We administered recombinant, Müller-glia targeted AAV-ShH10 into the mouse vitreous to induce retinal expression of either human vascular endothelial growth factor (VEGF)-A165, tumor necrosis factor alpha (TNF-α), or interleukin-6 (IL-6) and evaluated consequent effects by optical coherence tomography, fluorescein angiography, and histology. Results: Intravitreal injection of AAVs resulted in rapid and stable expression of the transgenes within 1 to 6 weeks. Akin to the role of VEGF-A in wet age-related macular degeneration, expression of VEGF-A led to several vasculopathies in mice, including neovascularization and vascular leakage. In contrast, the expression of the proinflammatory cytokines TNF-α or IL-6 induced retinal inflammation, as indicated by microglial activation. Furthermore, the expression of TNF-α, but not of IL-6, induced immune cell infiltration into the vitreous as well as vasculitis, and subsequently induced the development of fibrosis and epiretinal membranes. Conclusions: In summary, the long-term expression of human VEGF-A165, TNF-α, or IL-6 in the mouse eye induced specific pathologies within 6 weeks that mimic different aspects of human retinopathies. Translational Relevance: AAV-mediated expression of human genes in mice is an attractive approach to provide valuable insights into the underlying molecular mechanisms causing retinopathies and is easily adaptable to other genes and preclinical species supporting drug discovery for retinal diseases.


Asunto(s)
Factor de Necrosis Tumoral alfa , Factor A de Crecimiento Endotelial Vascular , Animales , Dependovirus/genética , Humanos , Interleucina-6/genética , Ratones , Retina , Factor de Necrosis Tumoral alfa/genética , Factor A de Crecimiento Endotelial Vascular/genética
10.
Int J Retina Vitreous ; 7(1): 30, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33845913

RESUMEN

BACKGROUND: Diabetic retinopathy (DR), a microvascular complication of diabetes, is the leading cause of visual impairment in people aged 20-65 years and can go undetected until vision is irreversibly lost. There is a need for treatments for non-proliferative diabetic retinopathy (NPDR) which, in comparison with current intravitreal (IVT) injections, offer an improved risk-benefit ratio and are suitable for the treatment of early stages of disease, during which there is no major visual impairment. Efficacious systemic therapy for NPDR, including oral treatment, would be an important and convenient therapeutic approach for patients and physicians and would reduce treatment burden. In this article, we review the rationale for the investigation of amine oxidase copper-containing 3 (AOC3), also known as semicarbazide-sensitive amine oxidase and vascular adhesion protein 1 (VAP1), as a novel target for the early treatment of moderate to severe NPDR. AOC3 is a membrane-bound adhesion protein that facilitates the binding of leukocytes to the retinal endothelium. Adherent leukocytes reduce blood flow and in turn rupture blood vessels, leading to ischemia and edema. AOC3 inhibition reduces leukocyte recruitment and is predicted to decrease the production of reactive oxygen species, thereby correcting the underlying hypoxia, ischemia, and edema seen in DR, as well as improving vascular function. CONCLUSION: There is substantial unmet need for convenient, non-invasive treatments targeting moderately severe and severe NPDR to reduce progression and preserve vision. The existing pharmacotherapies (IVT corticosteroids and IVT anti-vascular endothelial growth factor-A) target inflammation and angiogenesis, respectively. Unlike these treatments, AOC3 inhibition is predicted to address the underlying hypoxia and ischemia seen in DR. AOC3 inhibitors represent a promising therapeutic strategy for treating patients with DR and could offer greater choice and reduce treatment burden, with the potential to improve patient compliance.

11.
Pharmaceutics ; 13(8)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34452066

RESUMEN

Rho-associated kinase (ROCK) activation was shown to contribute to microvascular closure, retinal hypoxia, and to retinal pigment epithelium (RPE) barrier disruption in a rat model of diabetic retinopathy. Fasudil, a clinically approved ROCK inhibitor, improved retinal perfusion and reduced edema in this model, indicating that ROCK inhibition could be a promising new therapeutic approach for the treatment of diabetic retinopathy. However, due to its short intravitreal half-life, fasudil is not suitable for long-term treatment. In this study, we evaluated a very potent ROCK1/2 inhibitor (BIRKI) in a depot formulation administered as a single intravitreal injection providing a slow release for at least four weeks. Following BIRKI intravitreal injection in old Goto-Kakizaki (GK) type 2 diabetic rats, we observed a significant reduction in ROCK1 activity in the retinal pigment epithelium/choroid complex after 8 days and relocation of ROCK1 to the cytoplasm and nucleus in retinal pigment epithelium cells after 28 days. The chronic ROCK inhibition by the BIRKI depot formulation restored retinal pigment epithelial cell morphology and distribution, favored retinal capillaries dilation, and reduced hypoxia and inner blood barrier leakage observed in the diabetic retina. No functional or morphological negative effects were observed, indicating suitable tolerability of BIRKI after intravitreous injection. In conclusion, our data suggest that sustained ROCK inhibition, provided by BIRKI slow-release formulation, could be a valuable treatment option for diabetic retinopathy, especially with regard to the improvement of retinal vascular infusion and protection of the outer retinal barrier.

12.
Sci Rep ; 11(1): 10494, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006945

RESUMEN

Diabetic Retinopathy (DR) is among the major global causes for vision loss. With the rise in diabetes prevalence, an increase in DR incidence is expected. Current understanding of both the molecular etiology and pathways involved in the initiation and progression of DR is limited. Via RNA-Sequencing, we analyzed mRNA and miRNA expression profiles of 80 human post-mortem retinal samples from 43 patients diagnosed with various stages of DR. We found differentially expressed transcripts to be predominantly associated with late stage DR and pathways such as hippo and gap junction signaling. A multivariate regression model identified transcripts with progressive changes throughout disease stages, which in turn displayed significant overlap with sphingolipid and cGMP-PKG signaling. Combined analysis of miRNA and mRNA expression further uncovered disease-relevant miRNA/mRNA associations as potential mechanisms of post-transcriptional regulation. Finally, integrating human retinal single cell RNA-Sequencing data revealed a continuous loss of retinal ganglion cells, and Müller cell mediated changes in histidine and ß-alanine signaling. While previously considered primarily a vascular disease, attention in DR has shifted to additional mechanisms and cell-types. Our findings offer an unprecedented and unbiased insight into molecular pathways and cell-specific changes in the development of DR, and provide potential avenues for future therapeutic intervention.


Asunto(s)
Retinopatía Diabética/genética , Retina/metabolismo , Transcriptoma , Retinopatía Diabética/patología , Progresión de la Enfermedad , Expresión Génica , Humanos , Células Ganglionares de la Retina/metabolismo , Análisis de Secuencia de ARN/métodos , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual/métodos
13.
Mol Pharmacol ; 77(5): 734-43, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20103609

RESUMEN

The histamine H(4) receptor (H(4)R) is the latest identified histamine receptor to emerge as a potential drug target for inflammatory diseases. Animal models are employed to validate this potential drug target. Concomitantly, various H(4)R orthologs have been cloned, including the human, mouse, rat, guinea pig, monkey, pig, and dog H(4)Rs. In this article, we expressed all these H(4)R orthologs in human embryonic kidney 293T cells and compared their interactions with currently used standard H(4)R ligands, including the H(4)R agonists histamine, 4-methylhistamine, guanidinylethyl isothiourea (VUF 8430), the H(4)R antagonists 1-[(5-chloro-1H-indol-2-yl)carbonyl]-4-methylpiperazine (JNJ 7777120) and [(5-chloro-1H-benzimidazol-2-yl)carbonyl]-4-methylpiperazine (VUF 6002), and the inverse H(4)R agonist thioperamide. Most of the evaluated ligands display significantly different affinities at the different H(4)R orthologs. These "natural mutants" of H(4)R were used to study ligand-receptor interactions by using chimeric human-pig-human and pig-human-pig H(4)R proteins and site-directed mutagenesis. Our results are a useful reference for ligand selection for studies in animal models of diseases and offer new insights in the understanding of H(4)R-ligand receptor interactions.


Asunto(s)
Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos/genética , Secuencia de Aminoácidos , Animales , Células COS , Línea Celular , Chlorocebus aethiops , ADN Complementario/genética , Perros , Variación Genética , Cobayas , Haplorrinos , Histamina/metabolismo , Ratones , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Plásmidos , Ratas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos/metabolismo , Receptores Histamínicos H4 , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Transfección
14.
Bioorg Med Chem ; 17(11): 3987-94, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19414267

RESUMEN

Previous studies have demonstrated that clobenpropit (N-(4-chlorobenzyl)-S-[3-(4(5)-imidazolyl)propyl]isothiourea) binds to both the human histamine H(3) receptor (H(3)R) and H(4) receptor (H(4)R). In this paper, we describe the synthesis and pharmacological characterization of a series of clobenpropit analogs, which vary in the functional group adjacent to the isothiourea moiety in order to study structural requirements for H(3)R and H(4)R ligands. The compounds show moderate to high affinity for both the human H(3)R and H(4)R. Furthermore, the changes in the functional group attached to the isothiourea moiety modulate the intrinsic activity of the ligands at the H(4)R, ranging from neutral antagonism to full agonism. QSAR models have been generated in order to explain the H(3)R and H(4)R affinities.


Asunto(s)
Antagonistas de los Receptores Histamínicos H3/química , Imidazoles/síntesis química , Imidazoles/farmacología , Relación Estructura-Actividad Cuantitativa , Receptores Acoplados a Proteínas G/química , Receptores Histamínicos H3/química , Receptores Histamínicos/química , Tiourea/análogos & derivados , Antagonistas de los Receptores Histamínicos H3/farmacología , Humanos , Imidazoles/química , Ligandos , Masculino , Estructura Molecular , Unión Proteica/efectos de los fármacos , Receptores Histamínicos H4 , Tiourea/síntesis química , Tiourea/química , Tiourea/farmacología
15.
Biochem J ; 414(1): 121-31, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18452403

RESUMEN

The H(4)R (histamine H(4) receptor) is the latest identified member of the histamine receptor subfamily of GPCRs (G-protein-coupled receptors) with potential functional implications in inflammatory diseases and cancer. The H(4)R is primarily expressed in eosinophils and mast cells and has the highest homology with the H(3)R. The occurrence of at least twenty different hH(3)R (human H(3)R) isoforms led us to investigate the possible existence of H(4)R splice variants. In the present paper, we report on the cloning of the first two alternatively spliced H(4)R isoforms from CD34+ cord blood-cell-derived eosinophils and mast cells. These H(4)R splice variants are localized predominantly intracellularly when expressed recombinantly in mammalian cells. We failed to detect any ligand binding, H(4)R-ligand induced signalling or constitutive activity for these H(4)R splice variants. However, when co-expressed with full-length H(4)R [H(4)R((390)) (H(4)R isoform of 390 amino acids)], the H(4)R splice variants have a dominant negative effect on the surface expression of H(4)R((390)). We detected H(4)R((390))-H(4)R splice variant hetero-oligomers by employing both biochemical (immunoprecipitation and cell-surface labelling) and biophysical [time-resolved FRET (fluorescence resonance energy transfer)] techniques. mRNAs encoding the H(4)R splice variants were detected in various cell types and expressed at similar levels to the full-length H(4)R((390)) mRNA in, for example, pre-monocytes. We conclude that the H(4)R splice variants described here have a dominant negative effect on H(4)R((390)) functionality, as they are able to retain H(4)R((390)) intracellularly and inactivate a population of H(4)R((390)), presumably via hetero-oligomerization.


Asunto(s)
Variación Genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Histamínicos/química , Receptores Histamínicos/genética , Secuencia de Aminoácidos , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Clonación Molecular , Sangre Fetal/química , Sangre Fetal/citología , Sangre Fetal/metabolismo , Células HL-60 , Humanos , Datos de Secuencia Molecular , Isoformas de Proteínas/biosíntesis , Receptores Acoplados a Proteínas G/biosíntesis , Receptores Histamínicos/biosíntesis , Receptores Histamínicos H4
16.
Mol Pharmacol ; 73(1): 94-103, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17959710

RESUMEN

The aim of this study was to create and characterize constitutively active mutant (CAM) histamine H(1) receptors (H(1)R) using random mutagenesis methods to further investigate the activation process of the rhodopsin-like family of G protein-coupled receptors (GPCRs). This approach identified position 6.40 in TM 6 as a "hot spot" because mutation of Ile6.40(420) either to Glu, Gly, Ala, Arg, Lys, or Ser resulted in highly active CAM H(1)Rs, for which almost no histamine-induced receptor activation response could be detected. The highly conserved hydrophobic amino acid at position 6.40 defines, in a computational model of the H(1)R, the asparagine cage motif that restrains the side chain of Asn7.49 of the NPxxY motif toward transmembrane domain (TM 6) in the inactive state of the receptor. Mutation of the asparagine cage into Ala or Gly, removing the interfering bulky constraints, increases the constitutive activity of the receptor. The fact that the Ile6.40(420)Arg/Lys/Glu mutant receptors are highly active CAM H(1)Rs leads us to suggest that a positively charged residue, presumably the highly conserved Arg3.50 from the DRY motif, interacts in a direct or an indirect (through other side chains or/and internal water molecules) manner with the acidic Asp2.50..Asn7.49 pair for receptor activation.


Asunto(s)
Asparagina/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Histamínicos H1/metabolismo , Mutagénesis , Receptores Histamínicos H1/química , Receptores Histamínicos H1/genética
17.
J Pharmacol Exp Ther ; 327(1): 88-96, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18635748

RESUMEN

Using the natural variation in histamine H(4) receptor protein sequence, we tried to identify amino acids involved in the binding of H(4) receptor agonists. To this end, we constructed a variety of chimeric human-mouse H(4) receptor proteins to localize the domain responsible for the observed pharmacological differences between human and mouse H(4) receptors in the binding of H(4) receptor agonists, such as histamine, clozapine, and VUF 8430 [S-(2-guanidylethyl)-isothiourea]. After identification of a domain between the top of transmembrane domain 4 and the top of transmembrane domain 5 as being responsible for the differences in agonist affinity between human and mouse H(4)Rs, detailed site-directed mutagenesis studies were performed. These studies identified Phe(169) in the second extracellular loop as the single amino acid responsible for the differences in agonist affinity between the human and mouse H(4)Rs. Phe(169) is part of a Phe-Phe motif, which is also present in the recently crystallized beta(2)-adrenergic receptor. These results point to an important role of the second extracellular loop in the agonist binding to the H(4) receptor and provide a molecular explanation for the species difference between human and mouse H(4) receptors.


Asunto(s)
Receptores Acoplados a Proteínas G/química , Receptores Histamínicos/química , Secuencia de Aminoácidos , Animales , Línea Celular , Histamina/metabolismo , Humanos , Indoles/metabolismo , Ratones , Datos de Secuencia Molecular , Fenilalanina , Piperazinas/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Histamínicos H4 , Especificidad de la Especie
18.
J Med Chem ; 51(10): 2944-53, 2008 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-18433114

RESUMEN

Research on the therapeutic applications of the histamine H3 receptor (H3R) has traditionally focused on antagonists/inverse agonists. In contrast, H3R agonists have received less attention despite their potential use in several disease areas. The lower availability of H3R agonists not only hampers their full therapeutic exploration, it also prevents an unequivocal understanding of the structural requirements for H3R activation. In the light of these important issues, we present our findings on 4-benzyl-1H-imidazole-based H3R agonists. Starting from two high throughput screen hits (10 and 11), the benzyl side chain was altered with lipophilic groups using combinatorial and classical chemical approaches (compounds 12-31). Alkyne- or oxazolino-substituents gave excellent affinities and agonist activities up to the single digit nM range. Our findings further substantiate the growing notion that basic ligand sidechains are not necessary for H 3R activation and reveal the oxazolino group as a hitherto unexplored functional group in H3R research.


Asunto(s)
Agonistas de los Receptores Histamínicos/síntesis química , Imidazoles/síntesis química , Oxazoles/síntesis química , Receptores Histamínicos H3/metabolismo , Animales , Células CHO , Técnicas Químicas Combinatorias , Cricetinae , Cricetulus , Sistema Enzimático del Citocromo P-450/metabolismo , Diseño de Fármacos , Cobayas , Agonistas de los Receptores Histamínicos/química , Agonistas de los Receptores Histamínicos/farmacología , Humanos , Imidazoles/química , Imidazoles/farmacología , Técnicas In Vitro , Intestinos/efectos de los fármacos , Intestinos/fisiología , Modelos Moleculares , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Oxazoles/química , Oxazoles/farmacología , Unión Proteica , Ensayo de Unión Radioligante , Relación Estructura-Actividad
19.
Nat Rev Drug Discov ; 4(2): 107-20, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15665857

RESUMEN

Since the cloning of the histamine H(3) receptor cDNA in 1999 by Lovenberg and co-workers, this histamine receptor has gained the interest of many pharmaceutical companies as a potential drug target for the treatment of various important disorders, including obesity, attention-deficit hyperactivity disorder, Alzheimer's disease, schizophrenia, as well as for myocardial ischaemia, migraine and inflammatory diseases. Here, we discuss relevant information on this target protein and describe the development of various H(3) receptor agonists and antagonists, and their effects in preclinical animal models.


Asunto(s)
Clonación Molecular/métodos , Receptores Histamínicos H3/genética , Receptores Histamínicos H3/uso terapéutico , Animales , Evaluación Preclínica de Medicamentos/métodos , Agonistas de los Receptores Histamínicos/química , Agonistas de los Receptores Histamínicos/farmacología , Agonistas de los Receptores Histamínicos/uso terapéutico , Humanos , Receptores Histamínicos H3/efectos de los fármacos
20.
J Pharmacol Exp Ther ; 323(3): 888-98, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17855474

RESUMEN

In this article, we pharmacologically characterized two naturally occurring human histamine H3 receptor (hH3R) isoforms, hH3R(445) and hH3R(365). These abundantly expressed splice variants differ by a deletion of 80 amino acids in the intracellular loop 3. In this report, we show that the hH3R(365) is differentially expressed compared with the hH3R(445) and has a higher affinity and potency for H3R agonists and conversely a lower potency and affinity for H3R inverse agonists. Furthermore, we show a higher constitutive signaling of the hH3R(365) compared with the hH3R(445) in both guanosine-5'-O-(3-[35S]thio) triphosphate binding and cAMP assays, likely explaining the observed differences in hH3R pharmacology of the two isoforms. Because H3R ligands are beneficial in animal models of obesity, epilepsy, and cognitive diseases such as Alzheimer's disease and attention deficit hyperactivity disorder and currently entered clinical trails, these differences in H3R pharmacology of these two isoforms are of great importance for a detailed understanding of the action of H3R ligands.


Asunto(s)
Empalme Alternativo , Aminoácidos , Receptores Histamínicos H3 , Eliminación de Secuencia , Secuencia de Aminoácidos , Aminoácidos/genética , Animales , Unión Competitiva , Encéfalo/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Clonación Molecular , AMP Cíclico/metabolismo , Proteínas de Unión al GTP/metabolismo , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Ligandos , Datos de Secuencia Molecular , Unión Proteica , Isoformas de Proteínas , Ensayo de Unión Radioligante , Ratas , Receptores Histamínicos H3/química , Receptores Histamínicos H3/genética , Receptores Histamínicos H3/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA