Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Hum Genet ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170232

RESUMEN

Variants which disrupt splicing are a frequent cause of rare disease that have been under-ascertained clinically. Accurate and efficient methods to predict a variant's impact on splicing are needed to interpret the growing number of variants of unknown significance (VUS) identified by exome and genome sequencing. Here, we present the results of the CAGI6 Splicing VUS challenge, which invited predictions of the splicing impact of 56 variants ascertained clinically and functionally validated to determine splicing impact. The performance of 12 prediction methods, along with SpliceAI and CADD, was compared on the 56 functionally validated variants. The maximum accuracy achieved was 82% from two different approaches, one weighting SpliceAI scores by minor allele frequency, and one applying the recently published Splicing Prediction Pipeline (SPiP). SPiP performed optimally in terms of sensitivity, while an ensemble method combining multiple prediction tools and information from databases exceeded all others for specificity. Several challenge methods equalled or exceeded the performance of SpliceAI, with ultimate choice of prediction method likely to depend on experimental or clinical aims. One quarter of the variants were incorrectly predicted by at least 50% of the methods, highlighting the need for further improvements to splicing prediction methods for successful clinical application.

2.
Hum Mutat ; 40(9): 1530-1545, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31301157

RESUMEN

Accurate prediction of the impact of genomic variation on phenotype is a major goal of computational biology and an important contributor to personalized medicine. Computational predictions can lead to a better understanding of the mechanisms underlying genetic diseases, including cancer, but their adoption requires thorough and unbiased assessment. Cystathionine-beta-synthase (CBS) is an enzyme that catalyzes the first step of the transsulfuration pathway, from homocysteine to cystathionine, and in which variations are associated with human hyperhomocysteinemia and homocystinuria. We have created a computational challenge under the CAGI framework to evaluate how well different methods can predict the phenotypic effect(s) of CBS single amino acid substitutions using a blinded experimental data set. CAGI participants were asked to predict yeast growth based on the identity of the mutations. The performance of the methods was evaluated using several metrics. The CBS challenge highlighted the difficulty of predicting the phenotype of an ex vivo system in a model organism when classification models were trained on human disease data. We also discuss the variations in difficulty of prediction for known benign and deleterious variants, as well as identify methodological and experimental constraints with lessons to be learned for future challenges.


Asunto(s)
Sustitución de Aminoácidos , Biología Computacional/métodos , Cistationina betasintasa/genética , Cistationina/metabolismo , Cistationina betasintasa/metabolismo , Homocisteína/metabolismo , Humanos , Fenotipo , Medicina de Precisión
3.
Hum Mutat ; 40(9): 1373-1391, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31322791

RESUMEN

Whole-genome sequencing (WGS) holds great potential as a diagnostic test. However, the majority of patients currently undergoing WGS lack a molecular diagnosis, largely due to the vast number of undiscovered disease genes and our inability to assess the pathogenicity of most genomic variants. The CAGI SickKids challenges attempted to address this knowledge gap by assessing state-of-the-art methods for clinical phenotype prediction from genomes. CAGI4 and CAGI5 participants were provided with WGS data and clinical descriptions of 25 and 24 undiagnosed patients from the SickKids Genome Clinic Project, respectively. Predictors were asked to identify primary and secondary causal variants. In addition, for CAGI5, groups had to match each genome to one of three disorder categories (neurologic, ophthalmologic, and connective), and separately to each patient. The performance of matching genomes to categories was no better than random but two groups performed significantly better than chance in matching genomes to patients. Two of the ten variants proposed by two groups in CAGI4 were deemed to be diagnostic, and several proposed pathogenic variants in CAGI5 are good candidates for phenotype expansion. We discuss implications for improving in silico assessment of genomic variants and identifying new disease genes.


Asunto(s)
Biología Computacional/métodos , Variación Genética , Enfermedades no Diagnosticadas/diagnóstico , Adolescente , Niño , Preescolar , Simulación por Computador , Bases de Datos Genéticas , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Fenotipo , Enfermedades no Diagnosticadas/genética , Secuenciación Completa del Genoma
4.
Hum Mutat ; 40(9): 1519-1529, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31342580

RESUMEN

The NAGLU challenge of the fourth edition of the Critical Assessment of Genome Interpretation experiment (CAGI4) in 2016, invited participants to predict the impact of variants of unknown significance (VUS) on the enzymatic activity of the lysosomal hydrolase α-N-acetylglucosaminidase (NAGLU). Deficiencies in NAGLU activity lead to a rare, monogenic, recessive lysosomal storage disorder, Sanfilippo syndrome type B (MPS type IIIB). This challenge attracted 17 submissions from 10 groups. We observed that top models were able to predict the impact of missense mutations on enzymatic activity with Pearson's correlation coefficients of up to .61. We also observed that top methods were significantly more correlated with each other than they were with observed enzymatic activity values, which we believe speaks to the importance of sequence conservation across the different methods. Improved functional predictions on the VUS will help population-scale analysis of disease epidemiology and rare variant association analysis.


Asunto(s)
Acetilglucosaminidasa/metabolismo , Biología Computacional/métodos , Mutación Missense , Acetilglucosaminidasa/genética , Humanos , Modelos Genéticos , Análisis de Regresión
5.
Res Sq ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39011112

RESUMEN

Critical evaluation of computational tools for predicting variant effects is important considering their increased use in disease diagnosis and driving molecular discoveries. In the sixth edition of the Critical Assessment of Genome Interpretation (CAGI) challenge, a dataset of 28 STK11 rare variants (27 missense, 1 single amino acid deletion), identified in primary non-small cell lung cancer biopsies, was experimentally assayed to characterize computational methods from four participating teams and five publicly available tools. Predictors demonstrated a high level of performance on key evaluation metrics, measuring correlation with the assay outputs and separating loss-of-function (LoF) variants from wildtype-like (WT-like) variants. The best participant model, 3Cnet, performed competitively with well-known tools. Unique to this challenge was that the functional data was generated with both biological and technical replicates, thus allowing the assessors to realistically establish maximum predictive performance based on experimental variability. Three out of the five publicly available tools and 3Cnet approached the performance of the assay replicates in separating LoF variants from WT-like variants. Surprisingly, REVEL, an often-used model, achieved a comparable correlation with the real-valued assay output as that seen for the experimental replicates. Performing variant interpretation by combining the new functional evidence with computational and population data evidence led to 16 new variants receiving a clinically actionable classification of likely pathogenic (LP) or likely benign (LB). Overall, the STK11 challenge highlights the utility of variant effect predictors in biomedical sciences and provides encouraging results for driving research in the field of computational genome interpretation.

6.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895200

RESUMEN

Regular, systematic, and independent assessment of computational tools used to predict the pathogenicity of missense variants is necessary to evaluate their clinical and research utility and suggest directions for future improvement. Here, as part of the sixth edition of the Critical Assessment of Genome Interpretation (CAGI) challenge, we assess missense variant effect predictors (or variant impact predictors) on an evaluation dataset of rare missense variants from disease-relevant databases. Our assessment evaluates predictors submitted to the CAGI6 Annotate-All-Missense challenge, predictors commonly used by the clinical genetics community, and recently developed deep learning methods for variant effect prediction. To explore a variety of settings that are relevant for different clinical and research applications, we assess performance within different subsets of the evaluation data and within high-specificity and high-sensitivity regimes. We find strong performance of many predictors across multiple settings. Meta-predictors tend to outperform their constituent individual predictors; however, several individual predictors have performance similar to that of commonly used meta-predictors. The relative performance of predictors differs in high-specificity and high-sensitivity regimes, suggesting that different methods may be best suited to different use cases. We also characterize two potential sources of bias. Predictors that incorporate allele frequency as a predictive feature tend to have reduced performance when distinguishing pathogenic variants from very rare benign variants, and predictors supervised on pathogenicity labels from curated variant databases often learn label imbalances within genes. Overall, we find notable advances over the oldest and most cited missense variant effect predictors and continued improvements among the most recently developed tools, and the CAGI Annotate-All-Missense challenge (also termed the Missense Marathon) will continue to assess state-of-the-art methods as the field progresses. Together, our results help illuminate the current clinical and research utility of missense variant effect predictors and identify potential areas for future development.

7.
BMC Bioinformatics ; 14: 341, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24274019

RESUMEN

BACKGROUND: A novel highly conserved protein domain, DUF162 [Pfam: PF02589], can be mapped to two proteins: LutB and LutC. Both proteins are encoded by a highly conserved LutABC operon, which has been implicated in lactate utilization in bacteria. Based on our analysis of its sequence, structure, and recent experimental evidence reported by other groups, we hereby redefine DUF162 as the LUD domain family. RESULTS: JCSG solved the first crystal structure [PDB:2G40] from the LUD domain family: LutC protein, encoded by ORF DR_1909, of Deinococcus radiodurans. LutC shares features with domains in the functionally diverse ISOCOT superfamily. We have observed that the LUD domain has an increased abundance in the human gut microbiome. CONCLUSIONS: We propose a model for the substrate and cofactor binding and regulation in LUD domain. The significance of LUD-containing proteins in the human gut microbiome, and the implication of lactate metabolism in the radiation-resistance of Deinococcus radiodurans are discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Deinococcus/química , Deinococcus/metabolismo , Ácido Láctico/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Deinococcus/genética , Humanos , Microbiota/efectos de la radiación , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
8.
Nucleic Acids Res ; 39(Database issue): D494-6, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20961957

RESUMEN

The Open Protein Structure Annotation Network (TOPSAN) is a web-based collaboration platform for exploring and annotating structures determined by structural genomics efforts. Characterization of those structures presents a challenge since the majority of the proteins themselves have not yet been characterized. Responding to this challenge, the TOPSAN platform facilitates collaborative annotation and investigation via a user-friendly web-based interface pre-populated with automatically generated information. Semantic web technologies expand and enrich TOPSAN's content through links to larger sets of related databases, and thus, enable data integration from disparate sources and data mining via conventional query languages. TOPSAN can be found at http://www.topsan.org.


Asunto(s)
Bases de Datos de Proteínas , Conformación Proteica , Genómica , Proteínas/química , Proteínas/genética , Interfaz Usuario-Computador
9.
PLoS Biol ; 7(9): e1000205, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19787035

RESUMEN

The genome projects have unearthed an enormous diversity of genes of unknown function that are still awaiting biological and biochemical characterization. These genes, as most others, can be grouped into families based on sequence similarity. The PFAM database currently contains over 2,200 such families, referred to as domains of unknown function (DUF). In a coordinated effort, the four large-scale centers of the NIH Protein Structure Initiative have determined the first three-dimensional structures for more than 250 of these DUF families. Analysis of the first 248 reveals that about two thirds of the DUF families likely represent very divergent branches of already known and well-characterized families, which allows hypotheses to be formulated about their biological function. The remainder can be formally categorized as new folds, although about one third of these show significant substructure similarity to previously characterized folds. These results infer that, despite the enormous increase in the number and the diversity of new genes being uncovered, the fold space of the proteins they encode is gradually becoming saturated. The previously unexplored sectors of the protein universe appear to be primarily shaped by extreme diversification of known protein families, which then enables organisms to evolve new functions and adapt to particular niches and habitats. Notwithstanding, these DUF families still constitute the richest source for discovery of the remaining protein folds and topologies.


Asunto(s)
Proteínas/química , Animales , Bases de Datos de Proteínas , Humanos , Modelos Moleculares , Familia de Multigenes , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína , Factores de Tiempo
10.
J Physiol ; 589(Pt 1): 75-86, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-20921200

RESUMEN

Retinal ganglion cells exhibit substantial correlated firing: a tendency to fire nearly synchronously at rates different from those expected by chance. These correlations suggest that network interactions significantly shape the visual signal transmitted from the eye to the brain. This study describes the degree and structure of correlated firing among the major ganglion cell types in primate retina. Correlated firing among ON and OFF parasol, ON and OFF midget, and small bistratified cells, which together constitute roughly 75% of the input to higher visual areas, was studied using large-scale multi-electrode recordings. Correlated firing in the presence of constant, spatially uniform illumination exhibited characteristic strength, time course and polarity within and across cell types. Pairs of nearby cells with the same light response polarity were positively correlated; cells with the opposite polarity were negatively correlated. The strength of correlated firing declined systematically with distance for each cell type, in proportion to the degree of receptive field overlap. The pattern of correlated firing across cell types was similar at photopic and scotopic light levels, although additional slow correlations were present at scotopic light levels. Similar results were also observed in two other retinal ganglion cell types. Most of these observations are consistent with the hypothesis that shared noise from photoreceptors is the dominant cause of correlated firing. Surprisingly, small bistratified cells, which receive ON input from S cones, fired synchronously with ON parasol and midget cells, which receive ON input primarily from L and M cones. Collectively, these results provide an overview of correlated firing across cell types in the primate retina, and constraints on the underlying mechanisms.


Asunto(s)
Células Fotorreceptoras Retinianas Conos/fisiología , Células Ganglionares de la Retina/fisiología , Visión Ocular , Vías Visuales/fisiología , Animales , Potenciales Evocados , Macaca fascicularis , Macaca mulatta , Estimulación Luminosa , Transmisión Sináptica , Factores de Tiempo
11.
BMC Bioinformatics ; 11: 426, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20716366

RESUMEN

BACKGROUND: Many protein structures determined in high-throughput structural genomics centers, despite their significant novelty and importance, are available only as PDB depositions and are not accompanied by a peer-reviewed manuscript. Because of this they are not accessible by the standard tools of literature searches, remaining underutilized by the broad biological community. RESULTS: To address this issue we have developed TOPSAN, The Open Protein Structure Annotation Network, a web-based platform that combines the openness of the wiki model with the quality control of scientific communication. TOPSAN enables research collaborations and scientific dialogue among globally distributed participants, the results of which are reviewed by experts and eventually validated by peer review. The immediate goal of TOPSAN is to harness the combined experience, knowledge, and data from such collaborations in order to enhance the impact of the astonishing number and diversity of structures being determined by structural genomics centers and high-throughput structural biology. CONCLUSIONS: TOPSAN combines features of automated annotation databases and formal, peer-reviewed scientific research literature, providing an ideal vehicle to bridge a gap between rapidly accumulating data from high-throughput technologies and a much slower pace for its analysis and integration with other, relevant research.


Asunto(s)
Bases de Datos Genéticas , Genómica/métodos , Proteínas/química , Biología Computacional/métodos , Conducta Cooperativa , Internet , Análisis por Micromatrices , Proteínas/genética
12.
J Biol Chem ; 284(37): 25268-79, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19567872

RESUMEN

SsgA-like proteins (SALPs) are a family of homologous cell division-related proteins that occur exclusively in morphologically complex actinomycetes. We show that SsgB, a subfamily of SALPs, is the archetypal SALP that is functionally conserved in all sporulating actinomycetes. Sporulation-specific cell division of Streptomyces coelicolor ssgB mutants is restored by introduction of distant ssgB orthologues from other actinomycetes. Interestingly, the number of septa (and spores) of the complemented null mutants is dictated by the specific ssgB orthologue that is expressed. The crystal structure of the SsgB from Thermobifida fusca was determined at 2.6 A resolution and represents the first structure for this family. The structure revealed similarities to a class of eukaryotic "whirly" single-stranded DNA/RNA-binding proteins. However, the electro-negative surface of the SALPs suggests that neither SsgB nor any of the other SALPs are likely to interact with nucleotide substrates. Instead, we show that a conserved hydrophobic surface is likely to be important for SALP function and suggest that proteins are the likely binding partners.


Asunto(s)
Actinobacteria/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Secuencia de Aminoácidos , Sitios de Unión , División Celular , Microscopía por Crioelectrón , Cristalografía por Rayos X/métodos , Escherichia coli/metabolismo , Prueba de Complementación Genética , Microscopía Fluorescente/métodos , Microscopía de Contraste de Fase/métodos , Datos de Secuencia Molecular , Mutación , Homología de Secuencia de Aminoácido , Esporas Bacterianas
13.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1143-7, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20944203

RESUMEN

The NIH Protein Structure Initiative centers, such as the Joint Center for Structural Genomics (JCSG), have developed highly efficient technological platforms that are capable of experimentally determining the three-dimensional structures of hundreds of proteins per year. However, the overwhelming majority of the almost 5000 protein structures determined by these centers have yet to be described in the peer-reviewed literature. In a high-throughput structural genomics environment, the process of structure determination occurs independently of any associated experimental characterization of function, which creates a challenge for the annotation and analysis of structures and the publication of these results. This challenge has been addressed by developing TOPSAN (`The Open Protein Structure Annotation Network'), which enables the generation of knowledge via collaborations among globally distributed contributors supported by automated amalgamation of available information. TOPSAN currently provides annotations for all protein structures determined by the JCSG in addition to preliminary annotations on a large number of structures from the other PSI production centers. TOPSAN-enabled collaborations have resulted in insightful structure-function analysis for many proteins and have led to numerous peer-reviewed publications, as exemplified by the articles included in this issue of Acta Crystallographica Section F.


Asunto(s)
Bases de Datos Genéticas , Genómica , Humanos , Internet , Conformación Proteica
14.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1153-9, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20944205

RESUMEN

The first structural representative of the domain of unknown function DUF2006 family, also known as Pfam family PF09410, comprises a lipocalin-like fold with domain duplication. The finding of the calycin signature in the N-terminal domain, combined with remote sequence similarity to two other protein families (PF07143 and PF08622) implicated in isoprenoid metabolism and the oxidative stress response, support an involvement in lipid metabolism. Clusters of conserved residues that interact with ligand mimetics suggest that the binding and regulation sites map to the N-terminal domain and to the interdomain interface, respectively.


Asunto(s)
Proteínas Bacterianas/química , Bases de Datos Genéticas , Metabolismo de los Lípidos , Nitrosomonas europaea/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Nitrosomonas europaea/metabolismo , Estrés Oxidativo , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido
15.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1160-6, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20944206

RESUMEN

SSO2064 is the first structural representative of PF01796 (DUF35), a large prokaryotic family with a wide phylogenetic distribution. The structure reveals a novel two-domain architecture comprising an N-terminal, rubredoxin-like, zinc ribbon and a C-terminal, oligonucleotide/oligosaccharide-binding (OB) fold domain. Additional N-terminal helical segments may be involved in protein-protein interactions. Domain architectures, genomic context analysis and functional evidence from certain bacterial representatives of this family suggest that these proteins form a novel fatty-acid-binding component that is involved in the biosynthesis of lipids and polyketide antibiotics and that they possibly function as acyl-CoA-binding proteins. This structure has led to a re-evaluation of the DUF35 family, which has now been split into two entries in the latest Pfam release (v.24.0).


Asunto(s)
Acilcoenzima A/química , Proteínas Arqueales/química , Pliegue de Proteína , Sulfolobus solfataricus/química , Zinc/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , Genoma Arqueal , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo
16.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1167-73, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20944207

RESUMEN

The crystal structure of Dhaf4260 from Desulfitobacterium hafniense DCB-2 was determined by single-wavelength anomalous diffraction (SAD) to a resolution of 2.01 Šusing the semi-automated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). This protein structure is the first representative of the PF04016 (DUF364) Pfam family and reveals a novel combination of two well known domains (an enolase N-terminal-like fold followed by a Rossmann-like domain). Structural and bioinformatic analyses reveal partial similarities to Rossmann-like methyltransferases, with residues from the enolase-like fold combining to form a unique active site that is likely to be involved in the condensation or hydrolysis of molecules implicated in the synthesis of flavins, pterins or other siderophores. The genome context of Dhaf4260 and homologs additionally supports a role in heavy-metal chelation.


Asunto(s)
Proteínas Bacterianas/química , Desulfitobacterium/química , Metales Pesados/química , Fosfopiruvato Hidratasa/química , Pliegue de Proteína , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Desulfitobacterium/metabolismo , Metales Pesados/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína
17.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1174-81, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20944208

RESUMEN

Proteins with the DUF2063 domain constitute a new Pfam family, PF09836. The crystal structure of a member of this family, NGO1945 from Neisseria gonorrhoeae, has been determined and reveals that the N-terminal DUF2063 domain is likely to be a DNA-binding domain. In conjunction with the rest of the protein, NGO1945 is likely to be involved in transcriptional regulation, which is consistent with genomic neighborhood analysis. Of the 216 currently known proteins that contain a DUF2063 domain, the most significant sequence homologs of NGO1945 (∼40-99% sequence identity) are from various Neisseria and Haemophilus species. As these are important human pathogens, NGO1945 represents an interesting candidate for further exploration via biochemical studies and possible therapeutic intervention.


Asunto(s)
Proteínas Bacterianas/química , Regulación de la Expresión Génica , Neisseria gonorrhoeae/química , Transcripción Genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Genoma Bacteriano , Modelos Moleculares , Datos de Secuencia Molecular , Neisseria gonorrhoeae/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína
18.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1182-9, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20944209

RESUMEN

The crystal structures of BB2672 and SPO0826 were determined to resolutions of 1.7 and 2.1 Šby single-wavelength anomalous dispersion and multiple-wavelength anomalous dispersion, respectively, using the semi-automated high-throughput pipeline of the Joint Center for Structural Genomics (JCSG) as part of the NIGMS Protein Structure Initiative (PSI). These proteins are the first structural representatives of the PF06684 (DUF1185) Pfam family. Structural analysis revealed that both structures adopt a variant of the Bacillus chorismate mutase fold (BCM). The biological unit of both proteins is a hexamer and analysis of homologs indicates that the oligomer interface residues are highly conserved. The conformation of the critical regions for oligomerization appears to be dependent on pH or salt concentration, suggesting that this protein might be subject to environmental regulation. Structural similarities to BCM and genome-context analysis suggest a function in amino-acid synthesis.


Asunto(s)
Aminoácidos/metabolismo , Bordetella bronchiseptica/enzimología , Corismato Mutasa/química , Pliegue de Proteína , Rhodobacteraceae/enzimología , Secuencia de Aminoácidos , Bacillus/enzimología , Corismato Mutasa/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Homología Estructural de Proteína
19.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1198-204, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20944211

RESUMEN

The crystal structure of Jann_2411 from Jannaschia sp. strain CCS1, a member of the Pfam PF07336 family classified as a domain of unknown function (DUF1470), was solved to a resolution of 1.45 Šby multiple-wavelength anomalous dispersion (MAD). This protein is the first structural representative of the DUF1470 Pfam family. Structural analysis revealed a two-domain organization, with the N-terminal domain presenting a new fold called the ABATE domain that may bind an as yet unknown ligand. The C-terminal domain forms a treble-clef zinc finger that is likely to be involved in DNA binding. Analysis of the Jann_2411 protein and the broader ABATE-domain family suggests a role as stress-induced transcriptional regulators.


Asunto(s)
Proteínas Bacterianas/química , Rhodobacteraceae/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Dedos de Zinc
20.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 10): 1205-10, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20944212

RESUMEN

The structure of LP2179, a member of the PF08866 (DUF1831) family, suggests a novel α+ß fold comprising two ß-sheets packed against a single helix. A remote structural similarity to two other uncharacterized protein families specific to the Bacillus genus (PF08868 and PF08968), as well as to prokaryotic S-adenosylmethionine decarboxylases, is consistent with a role in amino-acid metabolism. Genomic neighborhood analysis of LP2179 supports this functional assignment, which might also then be extended to PF08868 and PF08968.


Asunto(s)
Aminoácidos/metabolismo , Proteínas Bacterianas/química , Lactobacillus plantarum/química , Pliegue de Proteína , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Lactobacillus plantarum/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA