Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 300(1): H57-63, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21057040

RESUMEN

Treatment of aortic smooth muscle cells with PDGF induces the upregulation of protein tyrosine phosphatase 1B (PTP1B). PTP1B, in turn, decreases the function of several growth factor receptors, thus completing a negative feedback loop. Studies have reported that PDGF induces the downregulation of PKG as part of a repertoire of dedifferentiation of vascular smooth muscle cells. Other studies have reported that chronic nitric oxide (NO) treatment also induces the downregulation of PKG. In the present study, we tested the hypothesis that the downregulation of PKG by PDGF or NO in differentiated rat aortic smooth muscle cells can be attributed to the upregulation of PTP1B. We found that treatment with PDGF or NO induced an upregulation of PTP1B levels. Overexpression of PTP1B induced a marked downregulation of PKG mRNA and protein levels, whereas the expression of dominant negative PTP1B or short interfering RNA directed against PTP1B blocked the capacity of PDGF or NO to decrease PKG levels. We conclude that the upregulation of PTP1B by PDGF or NO is both necessary and sufficient to induce the downregulation of PKG via an effect on PKG mRNA levels.


Asunto(s)
Aorta Torácica/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Óxido Nítrico/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Animales , Aorta Torácica/citología , Aorta Torácica/efectos de los fármacos , Western Blotting , Diferenciación Celular , Células Cultivadas , Regulación hacia Abajo , Femenino , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Óxido Nítrico/farmacología , Factor de Crecimiento Derivado de Plaquetas/farmacología , ARN Mensajero/metabolismo , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba
2.
Mol Ther ; 17(6): 1003-11, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19240692

RESUMEN

Achievement of specific tumor cell targeting remains a challenge for glioma gene therapy. We observed that the human high mobility group box2 (HMGB2) gene had a low level of expression in normal human brain tissues, but was significantly upregulated in glioblastoma tissues. With progressive truncation of a 5'-upstream sequence of the HMGB2 gene, we identified a 0.5-kb fragment displaying a high transcriptional activity in glioblastoma cells, but a low activity in normal brain cells. To test the feasibility of using the HMGB2 promoter sequence in targeted cancer therapy, we constructed a baculoviral vector expressing the herpes simplex virus thymidine kinase (HSVtk) gene driven by the HMGB2 promoter. Transduction with the viral vector induced cell death in glioblastoma cell lines in the presence of ganciclovir (GCV), but did not affect the survival of human astrocytes and neurons. In a mouse xenograft model, intratumor injection of the baculoviral vector suppressed the growth of human glioblastoma cells and prolonged the survival of tumor-bearing mice. Our results suggest that the novel 5' sequence of HMGB2 gene has a potential to be used as an efficient, tumor-selective promoter in targeted vectors for glioblastoma gene therapy.


Asunto(s)
Genes Transgénicos Suicidas/fisiología , Terapia Genética/métodos , Glioblastoma/terapia , Proteína HMGB2/genética , Regiones Promotoras Genéticas/genética , Animales , Línea Celular , Línea Celular Tumoral , Supervivencia Celular , Femenino , Ganciclovir/uso terapéutico , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/fisiología , Genes Transgénicos Suicidas/genética , Vectores Genéticos/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Células HeLa , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/fisiología , Transcripción Genética/genética , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Mol Ther ; 17(12): 2058-66, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19809402

RESUMEN

Transcriptional targeting using a tissue-specific cellular promoter is proving to be a powerful means for restricting transgene expression in targeted tissues. In the context of cancer suicide gene therapy, this approach may lead to cytotoxic effects in both cancer and nontarget normal cells. Considering microRNA (miRNA) function in post-transcriptional regulation of gene expression, we have developed a viral vector platform combining cellular promoter-based transcriptional targeting with miRNA regulation for a glioma suicide gene therapy in the mouse brain. The therapy employed, in a single baculoviral vector, a glial fibrillary acidic protein (GFAP) gene promoter and the repeated target sequences of three miRNAs that are enriched in astrocytes but downregulated in glioblastoma cells to control the expression of the herpes simplex virus thymidine kinase (HSVtk) gene. This resulted in significantly improved in vivo selectivity over the use of a control vector without miRNA regulation, enabling effective elimination of human glioma xenografts while producing negligible toxic effects on normal astrocytes. Thus, incorporating miRNA regulation into a transcriptional targeting vector adds an extra layer of security to prevent off-target transgene expression and should be useful for the development of gene delivery vectors with high targeting specificity for cancer therapy.


Asunto(s)
Neoplasias Encefálicas/terapia , Regulación Neoplásica de la Expresión Génica , Genes Transgénicos Suicidas/fisiología , Terapia Genética , Glioblastoma/terapia , MicroARNs/fisiología , Regiones Promotoras Genéticas/genética , Animales , Astrocitos/metabolismo , Baculoviridae/genética , Neoplasias Encefálicas/genética , Células Cultivadas , Quimioterapia Combinada , Femenino , Vectores Genéticos , Proteína Ácida Fibrilar de la Glía/genética , Glioblastoma/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Timidina Quinasa/genética , Transgenes/fisiología
4.
J Gen Physiol ; 126(6): 571-89, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16316976

RESUMEN

Here, we report the application of glutamate concentration jumps and voltage jumps to determine the kinetics of rapid reaction steps of excitatory amino acid transporter subtype 4 (EAAT4) with a 100-micros time resolution. EAAT4 was expressed in HEK293 cells, and the electrogenic transport and anion currents were measured using the patch-clamp method. At steady state, EAAT4 was activated by glutamate and Na+ with high affinities of 0.6 microM and 8.4 mM, respectively, and showed kinetics consistent with sequential binding of Na(+)-glutamate-Na+. The steady-state cycle time of EAAT4 was estimated to be >300 ms (at -90 mV). Applying step changes to the transmembrane potential, V(m), of EAAT4-expressing cells resulted in the generation of transient anion currents (decaying with a tau of approximately 15 ms), indicating inhibition of steady-state EAAT4 activity at negative voltages (<-40 mV) and activation at positive V(m) (>0 mV). A similar inhibitory effect at V(m) < 0 mV was seen when the electrogenic glutamate transport current was monitored, resulting in a bell-shaped I-V(m) curve. Jumping the glutamate concentration to 100 muM generated biphasic, saturable transient transport and anion currents (K(m) approximately 5 microM) that decayed within 100 ms, indicating the existence of two separate electrogenic reaction steps. The fast electrogenic reaction was assigned to Na+ binding to EAAT4, whereas the second reaction is most likely associated with glutamate translocation. Together, these results suggest that glutamate uptake of EAAT4 is based on the same molecular mechanism as transport by the subtypes EAATs 1-3, but that its kinetics and voltage dependence are dramatically different from the other subtypes. EAAT4 kinetics appear to be optimized for high affinity binding of glutamate, but not rapid turnover. Therefore, we propose that EAAT4 is a high-affinity/low-capacity transport system, supplementing low-affinity/high-capacity synaptic glutamate uptake by the other subtypes.


Asunto(s)
Proteínas de Transporte de Glutamato en la Membrana Plasmática/metabolismo , Ácido Glutámico/metabolismo , Aniones/metabolismo , Sitios de Unión , Transporte Biológico/fisiología , Encéfalo/metabolismo , Línea Celular , Electrofisiología , Transportador 4 de Aminoácidos Excitadores/fisiología , Líquido Extracelular/metabolismo , Proteínas de Transporte de Glutamato en la Membrana Plasmática/genética , Humanos , Cinética , Modelos Biológicos , Potasio/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sodio/metabolismo
5.
Biosens Bioelectron ; 26(12): 4720-7, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21684144

RESUMEN

In this study adherent animal cells were grown to confluence on circular gold-film electrodes of 250 µm diameter that had been deposited on the surface of a regular culture dish. The impedance of the cell-covered electrode was measured at designated frequencies to monitor the behavior of the cells with time. This approach is referred to as electric cell-substrate impedance sensing or short ECIS in the literature. The gold-film electrodes were also used to deliver well-defined AC voltage pulses of several volts amplitude and several hundred milliseconds duration to the adherent cells in order to achieve reversible membrane electroporation (in situ electroporation=ISE). Electroporation-assisted introduction of membrane impermeable molecules into the cytoplasm was studied by using FITC-labeled dextran molecules of different molecular weights. Probes as big as 2MDa were successfully loaded into the cells residing on the electrode surface. Time-resolved impedance measurements before and immediately after the electroporation pulse revealed the kinetics of membrane resealing as well as subsequent changes in cell morphology. Cells recovered from the electroporation pulse within less than 90 min. When membrane-impermeable, bioactive compounds like N(3)(-) or bleomycin were introduced into the cells by in situ electroporation, concomitant ECIS readings sensitively reported on the associated response of the cells to these toxins as a function of time (ISE-ECIS).


Asunto(s)
Antibióticos Antineoplásicos/administración & dosificación , Bleomicina/administración & dosificación , Electroporación/instrumentación , Colorantes Fluorescentes/administración & dosificación , Animales , Adhesión Celular , Línea Celular , Impedancia Eléctrica , Diseño de Equipo , Humanos , Cinética
6.
Adv Drug Deliv Rev ; 61(7-8): 589-602, 2009 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-19394380

RESUMEN

Transcriptional targeting using a mammalian cellular promoter to restrict transgene expression to target cells is often desirable for gene therapy. This strategy is, however, hindered by relatively weak activity of some cellular promoters, which may lead to low levels of gene expression, thus declining therapeutic efficacy. Here we outline the advances accomplished in the area of transcriptional targeting to brain cells, with a particular focus on engineering gene cassettes to augment cell type-specific expression. Among the effective approaches that improve gene expression while retaining promoter specificity are promoter engineering to change authentic sequences of a cellular promoter and the combined use of a native cellular promoter and other cis-acting elements. Success in achieving high level and sustained transgene expression only in the cell types of interest would be of importance in allowing gene therapy to have its impact on patient treatment.


Asunto(s)
Encéfalo/citología , Regulación de la Expresión Génica/genética , Marcación de Gen , Ingeniería Genética , Neuronas/fisiología , Regiones Promotoras Genéticas/genética , Transgenes/genética , Animales , Humanos , Activación Transcripcional
7.
Biochemistry ; 44(35): 11913-23, 2005 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-16128593

RESUMEN

Glutamate transporters are thought to be assembled as trimers of identical subunits that line a central hole, possibly the permeation pathway for anions. Here, we have tested the effect of multimerization on the transporter function. To do so, we coexpressed EAAC1(WT) with the mutant transporter EAAC1(R446Q), which transports glutamine but not glutamate. Application of 50 microM glutamate or 50 microM glutamine to cells coexpressing similar numbers of both transporters resulted in anion currents of 165 and 130 pA, respectively. Application of both substrates at the same time generated an anion current of 297 pA, demonstrating that the currents catalyzed by the wild-type and mutant transporter subunits are purely additive. This result is unexpected for anion permeation through a central pore but could be explained by anion permeation through independently functioning subunits. To further test the subunit independence, we coexpressed EAAC1(WT) and EAAC1(H295K), a transporter with a 90-fold reduced glutamate affinity as compared to EAAC1(WT), and determined the glutamate concentration dependence of currents of the mixed transporter population. The data were consistent with two independent populations of transporters with apparent glutamate affinities similar to those of EAAC1(H295K) and EAAC1(WT), respectively. Finally, we coexpressed EAAC1(WT) with the pH-independent mutant transporter EAAC1(E373Q), showing two independent populations of transporters, one being pH-dependent and the other being pH-independent. In conclusion, we propose that EAAC1 assembles as trimers of identical subunits but that the individual subunits in the trimer function independently of each other.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/metabolismo , Subunidades de Proteína/metabolismo , Alanina/metabolismo , Sustitución de Aminoácidos , Animales , Ácido Aspártico/farmacología , Relación Dosis-Respuesta a Droga , Transportador 3 de Aminoácidos Excitadores/antagonistas & inhibidores , Transportador 3 de Aminoácidos Excitadores/genética , Ácido Glutámico/metabolismo , Glutamina/farmacología , Humanos , Mutagénesis Sitio-Dirigida , Subunidades de Proteína/antagonistas & inhibidores , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA