RESUMEN
Cholera, a known diarrheal disease is associated with various risk factors like hypovolemic shock, rice watery stools, and death in developing countries. The overuse of antibiotics to treat cholera imposed a selective pressure for the emergence and spread of multi-drug resistant Vibrio cholerae strains. The failure of conventional antimicrobial therapy urged the researchers to find an alternative therapy that could meddle the cholera murmurs (Quorum Sensing). It seems to effectively overcome the conventional cholera therapies in parallel to decrease the morbidity and mortality rate in the developing countries. The paramount objective of this review essentially focuses on the different Quorum Sensing (QS) regulatory switches governing virulence and pathogenicity of Vibrio cholerae. This review also provides an insight into the plausible QS targets that could be exploited to bring about a breakthrough to the prevailing cholera therapy.
RESUMEN
Engineered living materials (ELMs) are a novel class of functional materials that typically feature spatial confinement of living components within an inert polymer matrix to recreate biological functions. Understanding the growth and spatial configuration of cellular populations within a matrix is crucial to predicting and improving their responsive potential and functionality. Here, this work investigates the growth, spatial distribution, and photosynthetic productivity of eukaryotic microalga Chlamydomonas reinhardtii (C. reinhardtii) in three-dimensionally shaped hydrogels in dependence of geometry and size. The embedded C. reinhardtii cells photosynthesize and form confined cell clusters, which grow faster when located close to the ELM periphery due to favorable gas exchange and light conditions. Taking advantage of location-specific growth patterns, this work successfully designs and prints photosynthetic ELMs with increased CO2 capturing rate, featuring high surface to volume ratio. This strategy to control cell growth for higher productivity of ELMs resembles the already established adaptations found in multicellular plant leaves.
Asunto(s)
Chlamydomonas reinhardtii , Chlamydomonas reinhardtii/metabolismo , Hidrogeles/metabolismo , FotosíntesisRESUMEN
Biofilms are three-dimensional (3D) bacterial communities that exhibit a highly self-organized nature in terms of their composition and complex architecture. Bacteria in biofilms display emergent biological properties, such as resistance to antimicrobials and disinfectants that the individual planktonic cells lack. Bacterial biofilms possess specialized architectural features including unique extracellular matrix compositions and a distinct spatially patterned arrangement of cells and matrix components within the biofilm. It is unclear which of these architectural elements of bacterial biofilms lead to the development of their emergent biological properties. Here, we report a 3D printing-based technique for studying the emergent resistance behaviors of Escherichia coli biofilms as a function of their architecture. Cellulose and curli are the major extracellular-matrix components in E. coli biofilms. We show that 3D-printed biofilms expressing either curli alone or both curli and cellulose in their extracellular matrices show higher resistance to exposure against disinfectants than 3D prints expressing either cellulose alone or no biofilm-matrix components. The 3D-printed biofilms expressing cellulose and/or curli also show thicker anaerobic zones than nonbiofilm-forming E. coli 3D prints. Thus, the matrix composition plays a crucial role in the emergent spatial patterning and biological endurance of 3D-printed biofilms. In contrast, initial spatial distribution of bacterial density or curli-producing cells does not have an effect on biofilm resistance phenotypes. Further, these 3D-printed biofilms could be reversibly attached to different surfaces (bacterial cellulose, glass, and polystyrene) and display resistance to physical distortions by retaining their shape and structure. This physical robustness highlights their potential in applications including bioremediation, protective coatings against pathogens on medical devices, or wastewater treatment, among many others. This new understanding of the emergent behavior of bacterial biofilms could aid in the development of novel engineered living materials using synthetic biology and materials science approaches.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/fisiología , Matriz Extracelular/fisiología , Proteínas Bacterianas/metabolismo , Celulosa/metabolismo , Escherichia coli/metabolismo , Matriz Extracelular/metabolismo , Impresión Tridimensional/instrumentaciónRESUMEN
Natural materials, such as nacre and silk, exhibit both high strength and toughness due to their hierarchical structures highly organized at the nano-, micro-, and macroscales. Bacterial cellulose (BC) presents a hierarchical fibril structure at the nanoscale. At the microscale, however, BC nanofibers are distributed randomly. Here, BC self-assembles into a highly organized spiral honeycomb microstructure giving rise to a high tensile strength (315 MPa) and a high toughness value (17.8 MJ m-3), with pull-out and de-spiral morphologies observed during failure. Both experiments and finite-element simulations indicate improved mechanical properties resulting from the honeycomb structure. The mild fabrication process consists of an in situ fermentation step utilizing poly(vinyl alcohol), followed by a post-treatment including freezing-thawing and boiling. This simple self-assembly production process is highly scalable, does not require any toxic chemicals, and enables the fabrication of light, strong, and tough hierarchical composite materials with tunable shape and size.
Asunto(s)
Materiales Biomiméticos/química , Celulosa/química , Hypocreales/química , Ensayo de Materiales , Tamaño de la Partícula , Propiedades de Superficie , Resistencia a la TracciónRESUMEN
Bacterial biofilms are three-dimensional networks of cells entangled in a self-generated extracellular polymeric matrix composed of proteins, lipids, polysaccharides, and nucleic acids. Biofilms can establish themselves on virtually any accessible surface and lead to varying impacts ranging from infectious diseases to degradation of toxic chemicals. Biofilms exhibit high mechanical stiffness and are inherently tolerant to adverse conditions including the presence of antibiotics, pollutants, detergents, high temperature, changes in pH, etc. These features make biofilms resilient, which is beneficial for applications in dynamic environments such as bioleaching, bioremediation, materials production, and wastewater purification. We have recently described an easy and cost-effective method for 3D printing of bacteria and have extended this technology for 3D printing of genetically engineered Escherichia coli biofilms. Our 3D printing platform exploits simple alginate chemistry for printing of a bacteria-alginate bioink mixture onto calcium-containing agar surfaces, resulting in the formation of bacteria-encapsulating hydrogels with varying geometries. Bacteria in these hydrogels remain intact, spatially patterned, and viable for several days. Printing of engineered bacteria to produce inducible biofilms leads to formation of multilayered three-dimensional structures that can tolerate harsh chemical treatments. Synthetic biology and material science approaches provide the opportunity to append a wide range of useful functionalities to these 3D-printed biofilms. In this article, we describe the wide range of future applications possible for applying functional 3D-printed biofilms to the construction of living biofilm-derived materials in a large-scale and environmentally stable manner.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Bioimpresión/métodos , Escherichia coli/citología , Alginatos/química , Biodegradación Ambiental , Escherichia coli/fisiología , Matriz Extracelular/fisiología , Hidrogeles/química , Impresión Tridimensional , Biología Sintética/métodosRESUMEN
In previous studies the aerial parts of Achillea fragrantissima were found to have substantial antileishmanial and antitrypanosomal activity. A bioassay-guided fractionation of a dichloromethane extract yielded the isolation of the essential anti-trypanosomal compounds of the plant. Seven sesquiterpene lactones (including Achillolide-A), two flavonoids, chrysosplenol-D and chrysosplenetine, and four alkamides (including pellitorine) were identified. This is the first report for the isolation of the sesquiterpene lactones 3 and 4, chrysosplenetine and the group of alkamides from this plant. Bioevaluation against Trypanosoma brucei brucei TC221 (T.b brucei) using the Alamar-Blue assay revealed the novel alkamide 13 to have an IC50 value of 40.37µM. A compound library, derived from the alkamide pellitorine (10), was synthesized and bioevaluated in order to find even more active substances. The most active compounds 26 and 27 showed activities in submicromolar concentrations and selectivity indices of 20.1 and 45.6, respectively, towards macrophage cell line J774.1. Toxicity of 26 and 27 was assessed using the greater wax moth Galleria mellonella larvae as an in vivo model. No significant toxicity was observed for the concentration range of 1.25-20mM.
Asunto(s)
Achillea/química , Ácidos Grasos Insaturados/farmacología , Flavonas/farmacología , Alcamidas Poliinsaturadas/farmacología , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Animales , Línea Celular , Ácidos Grasos Insaturados/aislamiento & purificación , Flavonas/aislamiento & purificación , Ratones , Estructura Molecular , Mariposas Nocturnas , Componentes Aéreos de las Plantas/química , Alcamidas Poliinsaturadas/aislamiento & purificación , Pruebas de Toxicidad , Tripanocidas/aislamiento & purificaciónRESUMEN
Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 µg/ml) and biofilm formation (sub-MIC range: 1.95-<31.25 µg/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs.
RESUMEN
Antibiotics have revolutionised medicine in many aspects, and their discovery is considered a turning point in human history. However, the most serious consequence of the use of antibiotics is the concomitant development of resistance against them. The marine environment has proven to be a very rich source of diverse natural products with significant antibacterial, antifungal, antiviral, antiparasitic, antitumour, anti-inflammatory, antioxidant, and immunomodulatory activities. Many marine natural products (MNPs)-for example, neoechinulin B-have been found to be promising drug candidates to alleviate the mortality and morbidity rates caused by drug-resistant infections, and several MNP-based anti-infectives have already entered phase 1, 2, and 3 clinical trials, with six approved for usage by the US Food and Drug Administration and one by the EU. In this Review, we discuss the diversity of marine natural products that have shown in-vivo efficacy or in-vitro potential against drug-resistant infections of fungal, viral, and parasitic origin, and describe their mechanism of action. We highlight the drug-like physicochemical properties of the reported natural products that have bioactivity against drug-resistant pathogens in order to assess their drug potential. Difficulty in isolation and purification procedures, toxicity associated with the active compound, ecological impacts on natural environment, and insufficient investments by pharmaceutical companies are some of the clear reasons behind market failures and a poor pipeline of MNPs available to date. However, the diverse abundance of natural products in the marine environment could serve as a ray of light for the therapy of drug-resistant infections. Development of resistance-resistant antibiotics could be achieved via the coordinated networking of clinicians, microbiologists, natural product chemists, and pharmacologists together with pharmaceutical venture capitalist companies.
Asunto(s)
Antiinfecciosos/administración & dosificación , Productos Biológicos/uso terapéutico , Drogas en Investigación , Biología Marina , Animales , Farmacorresistencia Bacteriana , Farmacorresistencia Fúngica , Drogas en Investigación/uso terapéutico , Humanos , Micosis , Enfermedades Parasitarias , Estados Unidos , VirosisRESUMEN
The production of shiga toxin (Stx) is a critical step in the establishment and progress of enterohemorrhagic Escherichia coli (EHEC) infections. The possible release of Stx from dead and dying bacteria, and the risk of resistance development have restricted the usage of antibiotics against EHEC. The chlorinated quaternary ammonium compound, strepthonium A, was isolated from the culture of Streptomyces sp. SBT345 that was cultivated from the Mediterranean sponge Agelas oroides. The structure was elucidated and confirmed by spectroscopic analyses including 1D and 2D NMR, ESI-HRMS, as well as ESI-HRMS2. Strepthonium A follows Lipinski's rule of five with respect to its molecular weight, CLogP values and the number of hydrogen acceptors and donors. Verotoxin ELISA assay demonstrated that Strepthonium A reduced the Stx production in EHEC strain EDL933 at 80 µM concentration without growth inhibition. This study demonstrates the potential of strepthonium A in restraining the production of Stx in EHEC infections.
Asunto(s)
Antibacterianos/farmacología , Escherichia coli Enterohemorrágica/efectos de los fármacos , Toxina Shiga/metabolismo , Streptomyces/metabolismo , Antibacterianos/química , Escherichia coli Enterohemorrágica/crecimiento & desarrollo , Escherichia coli Enterohemorrágica/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Espectroscopía de Resonancia Magnética , Estructura MolecularRESUMEN
Staphylococcus epidermidis and Staphylococcus aureus are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of S. epidermidis, S. aureus, and Pseudomonas aeruginosa. Results from in vitro biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium Streptomyces sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other S. epidermidis and S. aureus strains tested but had no inhibitory effects towards Pseudomonas biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the Streptomyces sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the Streptomyces sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to absence of cell toxicity, the extract might represent a good starting material to develop a future remedy to block staphylococcal biofilm formation on contact lenses and thereby to prevent intractable contact lens-mediated ocular infections.
RESUMEN
Genomic sequence data have revealed the presence of a large fraction of putatively silent biosynthetic gene clusters in the genomes of actinomycetes that encode for secondary metabolites, which are not detected under standard fermentation conditions. This review focuses on the effects of biological (co-cultivation), chemical, as well as molecular elicitation on secondary metabolism in actinomycetes. Our review covers the literature until June 2014 and exemplifies the diversity of natural products that have been recovered by such approaches from the phylum Actinobacteria.