RESUMEN
The plant vascular system is a key element for long-distance communication. Understanding its composition may provide valuable information on how plants grow and develop themselves. In this study, a quantitative proteome dataset of the vascular sap proteome of three commercially important Eucalyptus species was shown. Protein extraction was carried out using a pressure bomb, whereas only in silico predicted extracellular proteins were considered as part of the sap proteome. A total of 132 different proteins were identified in all three Eucalyptus species and the most abundant proteome subset within all three species was comprised of proteins involved in the carbohydrate metabolic process, proteolysis, components of membrane, and defense response. The sap proteome of the species E. grandis and E. urophylla revealed the highest similarities. Functional classification indicated that the sap proteome of E. grandis and E. urophylla are mostly comprised of proteins involved in defense response and proteolysis; whereas no prominent functional class was observed for the E. camaldulensis species. Quantitative comparison highlighted characteristic sap proteins in each of the Eucalyptus species. The results that could be found in this study can be used as a reference for the proteome sap analysis of Eucalyptus plants grown under different conditions.
Asunto(s)
Eucalyptus , Eucalyptus/metabolismo , Proteoma/metabolismoRESUMEN
RATIONALE: An evaluation of bipolar disorder (BD) and schizophrenia (SCZ) was carried out, from a metallomics point of view, using native conditions, attempting to preserve the interaction between metals and biomolecules. METHOD: For this task, blood serum samples from healthy individuals and patients were compared. In addition, the profiles of metal ions and metalloids involved in the pathologies were quantified, and a comparison was carried out of the protein profile in serum samples of healthy individuals and diseased patients. RESULTS: After optimization and accuracy evaluation of the method, different concentrations of Li, Mg, Mn and Zn were observed in the samples of BD patients and high levels of copper for SCZ patients, indicating an imbalance in the homeostasis of important micronutrients. The treatment, especially with lithium, may be related to competition between metallic ions. BD-related metallobiomolecules were detected, preserving the binding between metal ions and biomolecules, with four fractions detected in the ultraviolet range (280 nm). Four fractions were collected by high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS) and the proteins were identified by liquid chromatography/tandem mass spectrometry (LC/MS/MS). The Ig lambda chain V-IV region Hil, immunoglobulin heavy constant gama 1 (IGHG1) and beta-2-glycoprotein 1 (or ApoH) was identified in SCZ samples, suggesting its relationship with mood disorders. Surprisingly, Protein IGKV2D-28 was identified only in BD samples, opening up new possibilities for studies regarding the role of this protein in BD. CONCLUSIONS: This approach brings new perspectives to the comprehension of mood disorders, highlighting the importance of metallomics science in disease development. This strategy showed an innovative potential for evaluating mood disorders at the proteomic level, making it possible to identify proteins related to mood disorders and BD.
Asunto(s)
Trastorno Bipolar/sangre , Análisis Químico de la Sangre/métodos , Metales/sangre , Esquizofrenia/sangre , Oligoelementos/sangre , Adulto , Trastorno Bipolar/tratamiento farmacológico , Análisis Químico de la Sangre/instrumentación , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/química , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión/métodos , Femenino , Humanos , Masculino , Manganeso/sangre , Espectrometría de Masas/métodos , Microondas , Persona de Mediana Edad , Esquizofrenia/tratamiento farmacológico , Zinc/sangreRESUMEN
Eucalyptus urograndis is a hybrid eucalyptus of major economic importance to the Brazilian pulp and paper industry. Although widely used in forest nurseries around the country, little is known about the biochemical changes imposed by environmental stress in this species. In this study, we evaluated the changes in the stem proteome after short-term stimulation by exposure to low temperature. Using two-dimensional gel electrophoresis coupled to high-resolution mass spectrometry-based protein identification, 12 proteins were found to be differentially regulated and successfully identified after stringent database searches against a protein database from a closely related species (Eucalyptus grandis). The identification of these proteins indicated that the E. urograndis stem proteome responded quickly to low temperature, mostly by down-regulating specific proteins involved in energy metabolism, protein synthesis and signaling. The results of this study represent the first step in understanding the molecular and biochemical responses of E. urograndis to thermal stress.
RESUMEN
This review is a compilation of proteomic studies on forest tree species published in the last decade (2012-2022), mostly focused on the most investigated species, including Eucalyptus, Pinus, and Quercus. Improvements in equipment, platforms, and methods in addition to the increasing availability of genomic data have favored the biological knowledge of these species at the molecular, organismal, and community levels. Integration of proteomics with physiological, biochemical and other large-scale omics in the direction of the Systems Biology, will provide a comprehensive understanding of different biological processes, from growth and development to responses to biotic and abiotic stresses. As main issue we envisage that proteomics in long-living plants will thrive light on the plant responses and resilience to global climate change, contributing to climate mitigation strategies and molecular breeding programs. Proteomics not only will provide a molecular knowledge of the mechanisms of resilience to either biotic or abiotic stresses, but also will allow the identification on key gene products and its interaction. Proteomics research has also a translational character being applied to the characterization of the variability and biodiversity, as well as to wood and non-wood derived products, traceability, allergen and bioactive peptides identification, among others. Even thought, the full potential of proteomics is far from being fully exploited in forest tree research, with PTMs and interactomics being reserved to plant model systems. The most outstanding achievements in forest tree proteomics in the last decade as well as prospects are discussed.
RESUMEN
As one of the world's top three popular non-alcoholic beverages, tea is economically and culturally valuable. Xinyang Maojian, this elegant green tea, is one of the top ten famous tea in China and has gained prominence for thousands of years. However, the cultivation history of Xinyang Maojian tea population and selection signals of differentiation from the other major variety Camellia sinensis var. assamica (CSA) remain unclear. We newly generated 94 Camellia sinensis (C. sinensis) transcriptomes including 59 samples in the Xinyang area and 35 samples collected from 13 other major tea planting provinces in China. Comparing the very low resolution of phylogeny inferred from 1785 low-copy nuclear genes with 94 C. sinensis samples, we successfully resolved the phylogeny of C. sinensis samples by 99,115 high-quality SNPs from the coding region. The sources of tea planted in the Xinyang area were extensive and complex. Specifically, Shihe District and Gushi County were the two earliest tea planting areas in Xinyang, reflecting a long history of tea planting. Furthermore, we identified numerous selection sweeps during the differentiation of CSA and CSS and these positive selection genes are involved in many aspects such as regulation of secondary metabolites synthesis, amino acid metabolism, photosynthesis, etc. Numerous specific selective sweeps of modern cultivars were annotated with functions in various different aspects, indicating the CSS and CSA populations possibly underwent independent specific domestication processes. Our study indicated that transcriptome-based SNP-calling is an efficient and cost-effective method in untangling intraspecific phylogenetic relationships. This study provides a significant understanding of the cultivation history of the famous Chinese tea Xinyang Maojian and unravels the genetic basis of physiological and ecological differences between the two major tea subspecies.
RESUMEN
Chloroplast metabolism is very sensitive to environmental fluctuations and is intimately related to plant leaf development. Characterization of the chloroplast proteome dynamics can contribute to a better understanding on plant adaptation to different climate scenarios and leaf development processes. Herein, we carried out a discovery-driven analysis of the Eucalyptus grandis chloroplast proteome during leaf maturation and throughout different seasons of the year. The chloroplast proteome from young leaves differed the most from all assessed samples. Most upregulated proteins identified in mature and young leaves were those related to catabolic-redox signaling and biogenesis processes, respectively. Seasonal dynamics revealed unique proteome features in the fall and spring periods. The most abundant chloroplast protein in humid (wet) seasons (spring and summer) was a small subunit of RuBisCO, while in the dry periods (fall and winter) the proteins that showed the most pronounced accumulation were associated with photo-oxidative damage, Calvin cycle, shikimate pathway, and detoxification. Our investigation of the chloroplast proteome dynamics during leaf development revealed significant alterations in relation to the maturation event. Our findings also suggest that transition seasons induced the most pronounced chloroplast proteome changes over the year. This study contributes to a more comprehensive understanding on the subcellular mechanisms that lead to plant leaf adaptation and ultimately gives more insights into Eucalyptus grandis phenology.
Asunto(s)
Eucalyptus , Cloroplastos/metabolismo , Hojas de la Planta/metabolismo , Proteoma/metabolismo , Estaciones del AñoRESUMEN
Tea is one of the three most popular nonalcoholic beverages globally and has extremely high economic and cultural value. Currently, the classification, taxonomy, and evolutionary history of the tea family are largely elusive, including phylogeny, divergence, speciation, and diversity. For understanding the evolutionary history and dynamics of species diversity in Theaceae, a robust phylogenetic framework based on 1785 low-copy and 79,103 multi-copy nuclear genes from 91 tea plant genomes and transcriptome datasets had been reconstructed. Our results maximumly supported that the tribes Stewartieae and Gordonieae are successive sister groups to the tribe Theeae from both coalescent and super matrix ML tree analyses. Moreover, in the most evolved tribe, Theeae, the monophyletic genera Pyrenaria, Apterosperma, and Polyspora are the successive sister groups of Camellia. We also yield a well-resolved relationship of Camellia, which contains the vast majority of Theaceae species richness. Molecular dating suggests that Theaceae originated in the late L-Cretaceous, with subsequent early radiation under the Early Eocene Climatic Optimal (EECO) for the three tribes. A diversification rate shift was detected in the common ancestors of Camellia with subsequent acceleration in speciation rate under the climate optimum in the early Miocene. These results provide a phylogenetic framework and new insights into factors that likely have contributed to the survival of Theaceae, especially a successful radiation event of genus Camellia members to subtropic/tropic regions. These novel findings will facilitate the efficient conservation and utilization of germplasm resources for breeding cultivated tea and oil-tea. Collectively, these results provide a foundation for further morphological and functional evolutionary analyses across Theaceae.
RESUMEN
Hybridization is common and considered as an important evolutionary force to increase intraspecific genetic diversity. Detecting hybridization events is crucial for understanding the evolutionary history of species and further improving molecular breeding. The studies on identifying hybridization events through the phylogenomic approach are still limited. We proposed the conception and method of identifying allopolyploidy events by phylogenomics. The reconciliation and summary of nuclear multi-labeled gene family trees were adopted to untangle hybridization events from next-generation data in our novel phylogenomic approach. Given horticulturalists' relatively clear cultivated crossbreeding history, the water lily family is a suitable case for examining recent allopolyploidy events. Here, we reconstructed and confirmed the well-resolved nuclear phylogeny for the Nymphaeales family in the context of geological time as a framework for identifying hybridization signals. We successfully identified two possible allopolyploidy events with the parental lineages for the hybrids in the family Nymphaeaceae based on summarization from multi-labeled gene family trees of Nymphaeales. The lineages where species Nymphaea colorata and Nymphaea caerulea are located may be the progenitors of horticultural cultivated species Nymphaea 'midnight' and Nymphaea 'Woods blue goddess'. The proposed hybridization hypothesis is also supported by horticultural breeding records. Our methodology can be widely applied to identify hybridization events and theoretically facilitate the genome breeding design of hybrid plants.
RESUMEN
Among the Ctenocephalides felis felis-borne pathogens, Bartonella henselae, the main aetiological agent of cat scratch disease (CSD), is of increasing comparative biomedical importance. Despite the importance of B. henselae as an emergent pathogen, prevention of the diseases caused by this agent in cats, dogs and humans mostly relies on the use of ectoparasiticides. A vaccine targeting both flea fitness and pathogen competence is an attractive choice requiring the identification of flea proteins/metabolites with a dual effect. Even though recent developments in vector and pathogen -omics have advanced the understanding of the genetic factors and molecular pathways involved at the tick-pathogen interface, leading to discovery of candidate protective antigens, only a few studies have focused on the interaction between fleas and flea-borne pathogens. Taking into account the period of time needed for B. henselae replication in flea digestive tract, the present study investigated flea-differentially abundant proteins (FDAP) in unfed fleas, fleas fed on uninfected cats, and fleas fed on B. henselae-infected cats at 24 hours and 9 days after the beginning of blood feeding. Proteomics approaches were designed and implemented to interrogate differentially expressed proteins, so as to gain a better understanding of proteomic changes associated with the initial B. henselae transmission period (24 hour timepoint) and a subsequent time point 9 days after blood ingestion and flea infection. As a result, serine proteases, ribosomal proteins, proteasome subunit α-type, juvenile hormone epoxide hydrolase 1, vitellogenin C, allantoinase, phosphoenolpyruvate carboxykinase, succinic semialdehyde dehydrogenase, glycinamide ribotide transformylase, secreted salivary acid phosphatase had high abundance in response of C. felis blood feeding and/or infection by B. henselae. In contrast, high abundance of serpin-1, arginine kinase, ribosomal proteins, peritrophin-like protein, and FS-H/FSI antigen family member 3 was strongly associated with unfed cat fleas. Findings from this study provide insights into proteomic response of cat fleas to B. henselae infected and uninfected blood meal, as well as C. felis response to invading B. henselae over an infection time course, thus helping understand the complex interactions between cat fleas and B. henselae at protein levels.
Asunto(s)
Bartonella henselae , Enfermedades de los Gatos , Ctenocephalides , Felis , Siphonaptera , Animales , Bartonella henselae/genética , Gatos , ProteómicaRESUMEN
Eucalyptus species are widely used in the forestry industry, and a significant increase in the number of sequences available in database repositories has been observed for these species. In proteomics, a protein is identified by correlating the theoretical fragmentation spectrum derived from genomic/transcriptomic data against the experimental fragmentation mass spectrum acquired from large-scale analysis of protein mixtures. Proteogenomics is an alternative approach that can identify novel proteins encoded by regions previously considered as non-coding. This study aimed to confidently identify and confirm the existence of previously unknown protein-coding sequences in the Eucalyptus grandis genome. To this end, we used a modified spectral correlation strategy and a dedicated de novo peptide sequencing pipeline. Upon the strategy used here, we confidently identified 41 novel peptide forms and six peptides containing at least one single amino acid substitution. The most representative genomic class of novel peptides was identified as originating from alternative reading frames. In contrast, no clear single amino acid substitution pattern was identified. Validation of the identifications was carried out using a parallel reaction monitoring approach that provided further mass spectrometry support for the existence of the novel peptide sequences. Data are available via ProteomeXchange with identifier PXD022110.
Asunto(s)
Eucalyptus/química , Proteínas de Plantas/química , Espectrometría de Masas en Tándem/métodos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Genómica/métodos , Proteómica/métodosRESUMEN
Eucalyptus grandis and Eucalyptus globulus are important species for the Brazilian forestry industry. E. grandis plantations are mainly found in tropical regions, yet E. globulus plants are usually cultivated under moderate to low temperature conditions. As temperature seems to be a key factor for the planting of these species, we revisited our previously generated shotgun proteomics dataset to identify the main patterns of proteome regulation induced by thermal stimulus and to pinpoint specific proteins involved in the environmental response. Large-scale analysis has pointed out the different proteomic responses of E. grandis and E. globulus under temperature stimulus, with 296 proteins considered to be differentially regulated in the stems of Eucalyptus spp. grown at different temperatures. A stringent filtering approach was used to identify the most differentially regulated proteins. Through the stringent criteria, 66 proteins were found to be enriched in the plant species. Cultivation of E. globulus plants in low-temperature conditions induced the highest number of differentially regulated proteins. Additionally, metabolic proteins were mostly down-regulated, while stress-related proteins were majorly up-regulated in both species. Finally, the subset of the most differentially regulated proteins comprised new candidates of protein markers of temperature stress.
Asunto(s)
Eucalyptus/metabolismo , Tallos de la Planta/metabolismo , Proteoma , Proteómica , Temperatura , Análisis por Conglomerados , Biología Computacional , Proteómica/métodos , Estrés FisiológicoRESUMEN
Photosynthetic organisms may be drastically affected by the future climate projections of a considerable increase in CO2 concentrations. Growth under a high concentration of CO2 could stimulate carbon assimilation-especially in C3-type plants. We used a proteomics approach to test the hypothesis of an increase in the abundance of the enzymes involved in carbon assimilation in Eucalyptus urophylla plants grown under conditions of high atmospheric CO2. Our strategy allowed the profiling of all Calvin-Benson cycle enzymes and associated protein species. Among the 816 isolated proteins, those involved in carbon fixation were found to be the most abundant ones. An increase in the abundance of six key enzymes out of the eleven core enzymes involved in carbon fixation was detected in plants grown at a high CO2 concentration. Proteome changes were corroborated by the detection of a decrease in the stomatal aperture and in the vascular bundle area in Eucalyptus urophylla plantlets grown in an environment of high atmospheric CO2. Our proteomics approach indicates a positive metabolic response regarding carbon fixation in a CO2-enriched atmosphere. The slight but significant increase in the abundance of the Calvin enzymes suggests that stomatal closure did not prevent an increase in the carbon assimilation rates. BIOLOGICAL SIGNIFICANCE: The sample enrichment strategy and data analysis used here enabled the identification of all enzymes and most protein isoforms involved in the Calvin-Benson-Bessham cycle in Eucalyptus urophylla. Upon growth in CO2-enriched chambers, Eucalyptus urophylla plantlets responded by reducing the vascular bundle area and stomatal aperture size and by increasing the abundance of six of the eleven core enzymes involved in carbon fixation. Our proteome approach provides an estimate on how a commercially important C3-type plant would respond to an increase in CO2 concentrations. Additionally, confirmation at the protein level of the predicted genes involved in carbon assimilation may be used in plant transformation strategies aiming to increase plant adaptability to climate changes or to increase plant productivity.
Asunto(s)
Dióxido de Carbono/farmacología , Carbono/metabolismo , Eucalyptus/efectos de los fármacos , Eucalyptus/crecimiento & desarrollo , Eucalyptus/metabolismo , Atmósfera/química , Dióxido de Carbono/análisis , Fotosíntesis/efectos de los fármacos , Fotosíntesis/fisiología , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Proteínas de Plantas/análisis , Proteínas de Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo , ProteómicaRESUMEN
Eucalyptus grandis and Eucalyptus globulus are among the most widely cultivated trees, differing in lignin composition and plantation areas, as E. grandis is mostly cultivated in tropical regions while E. globulus is preferred in temperate areas. As temperature is a key modulator in plant metabolism, a large-scale proteome analysis was carried out to investigate changes in the antioxidant system and the lignification metabolism in plantlets grown at different temperatures. Our strategy allowed the identification of 3111 stem proteins. A total of 103 antioxidant proteins were detected in the stems of both species. Hierarchical clustering revealed that alterations in the antioxidant proteins are more prominent when Eucalyptus seedlings were exposed to high temperature and that the superoxide isoforms coded by the gene Eucgr.B03930 are the most abundant antioxidant enzymes induced by thermal stimulus. Regarding the lignin biosynthesis, our proteomics approach resulted in the identification of 13 of the 17 core proteins involved in this metabolism, corroborating with gene predictions and the proposed lignin toolbox. Quantitative analyses revealed significant differences in 8 protein isoforms, including the ferulate 5-hydroxylase isoform F5H1, a key enzyme in catalyzing the synthesis of sinapyl alcohol, and the cinnamyl alcohol dehydrogenase isoform CAD2, the last enzyme in monolignol biosynthesis. Data are available via ProteomeXchange with identifier PXD005743.
Asunto(s)
Antioxidantes/metabolismo , Eucalyptus/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Temperatura , Eucalyptus/clasificación , Lignina/metabolismo , Tallos de la Planta/metabolismoRESUMEN
GeLCMS/MS based label free proteomic profiling was used in the large scale identification and quantification of proteins from Brazilian pine (Araucaria angustifolia) embryogenic cell (EC) lines that showed different propensities to form somatic embryos. Using a predicted protein sequence database that was derived from A. angustifolia RNA-Seq data, 2398 non-redundant proteins were identified. The log2 of the spectral count values of 858 proteins of these proteins showed a normal distribution, and were used for statistical analysis. Statistical tests indicated that 106 proteins were significantly differentially abundant between the two EC lines, and that 35 were more abundant in the responsive genotype (EC line SE1) and 71 were more abundant in the blocked genotype (EC line SE6). An increase in the abundance of proteins related to cell defense, anti-oxidative stress responses, and storage reserve deposition was observed in SE1. Moreover, in SE6 we observed an increased abundance of two proteins associated with seed development during the embryogenic cell proliferation stage, which we suggest is associated with genotypes showing a low responsiveness to embryo formation. Differences in protein abundance between the EC lines are discussed in terms of carbohydrate metabolism, cell division, defense response, gene expression, and response to reactive oxygen species.
Asunto(s)
Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Tracheophyta/metabolismo , Metabolismo de los Hidratos de Carbono , Carbohidratos/química , Bases de Datos de Proteínas , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica , Genotipo , Técnicas de Embriogénesis Somática de Plantas , ARN/química , Especies Reactivas de Oxígeno/metabolismo , Semillas/metabolismo , Análisis de Secuencia de ARN , Espectrometría de Masas en Tándem , Tripsina/químicaRESUMEN
Prolamins are the major seed storage proteins of grasses. In maize and related species, prolamins are classified into α-, ß-, γ-, and δ-subclasses by their solubility properties. α-prolamins are encoded by multigene families and have a secondary structure that consists of tandem α-helix repeats. Maize has two α-prolamin subclasses, namely the 19 and 22 kDa subclasses that contain nine and 10 α-helix repeats, respectively. Here, we present an evolutionary study based on the structure, organization, and expression of α-prolamins in maize, sugarcane, sorghum, and coix. True 22 kDa subclasses containing 10 repeats are conserved in all four species, but true 19 kDa subclasses containing nine repeats are found only in maize and sugarcane. We discovered a 19 kDa-like α-coixin that, as in sorghum, is encoded by few genes. These data suggest that a 19 kDa progenitor present in the ancestor common to maize, coix, sorghum, and sugarcane was preserved at low copy number in coix and sorghum, while amplified into multigene family architecture in maize and sugarcane. The expression profiling of α-prolamins, verified by two-dimensional gels, showed highly conserved multispot composition for the 19 kDa α-prolamins in maize and sugarcane. Coix and sorghum did not present true 19 kDa α-prolamin spots. Our data show remarkable similarity between maize and sugarcane 19 kDa α-prolamins regarding both gene structure and expression. Since the multigene architecture of 19 kDa α-canein appeared after sugarcane diverged from sorghum, our data suggest that maize and sugarcane might have acquired the multigene family encoding these storage proteins from a common ancestor.
RESUMEN
Trypanosoma vivax is a hemoprotozoon that causes disease in cattle and is difficult to diagnose. The host-parasite relationship in cattle that are infected by T. vivax has only been poorly studied. In the present study, a total of 429 serum proteinograms were produced from naturally infected animals (NIF) and were compared with 50 samples from control animals (C). The total protein, IgA band, complement C3 ß chain band, albumin band, antitrypsin band, IgG band, haptoglobin band, complement C3c α chain band and protein HP-20 band presented higher levels in the serum proteinograms of the NIF group. Inter-alpha-trypsin inhibitor heavy chain H4, α2-macroglobulin, complement C6, ceruloplasmin, transferrin band and apolipoprotein A1 band presented lower levels in this group. There was no significant difference (p<0.05) in acid glycoprotein serum concentration between the NIF and C groups. Acute phase proteins may be useful for understanding the host-parasite relationship, since the antitrypsin band was only present in the NIF group. This can be used as an indicator for infection in cattle that are naturally infected by T. vivax.
Asunto(s)
Proteínas de Fase Aguda/metabolismo , Enfermedades de los Bovinos/parasitología , Trypanosoma vivax/inmunología , Tripanosomiasis Africana/veterinaria , Animales , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos , Bovinos , Enfermedades de los Bovinos/sangre , Enfermedades de los Bovinos/inmunología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Técnica del Anticuerpo Fluorescente Indirecta/veterinaria , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Tripanosomiasis Africana/sangre , Tripanosomiasis Africana/patologíaRESUMEN
Horsetail (Equisetum hyemale) is a widespread vascular plant species, whose reproduction is mainly dependent on the growth and development of the rhizomes. Due to its key evolutionary position, the identification of factors that could be involved in the existence of the rhizomatous trait may contribute to a better understanding of the role of this underground organ for the successful propagation of this and other plant species. In the present work, we characterized the proteome of E. hyemale rhizomes using a GeLC-MS spectral-counting proteomics strategy. A total of 1,911 and 1,860 non-redundant proteins were identified in the rhizomes apical tip and elongation zone, respectively. Rhizome-characteristic proteins were determined by comparisons of the developing rhizome tissues to developing roots. A total of 87 proteins were found to be up-regulated in both horsetail rhizome tissues in relation to developing roots. Hierarchical clustering indicated a vast dynamic range in the regulation of the 87 characteristic proteins and revealed, based on the regulation profile, the existence of nine major protein groups. Gene ontology analyses suggested an over-representation of the terms involved in macromolecular and protein biosynthetic processes, gene expression, and nucleotide and protein binding functions. Spatial difference analysis between the rhizome apical tip and the elongation zone revealed that only eight proteins were up-regulated in the apical tip including RNA-binding proteins and an acyl carrier protein, as well as a KH domain protein and a T-complex subunit; while only seven proteins were up-regulated in the elongation zone including phosphomannomutase, galactomannan galactosyltransferase, endoglucanase 10 and 25, and mannose-1-phosphate guanyltransferase subunits alpha and beta. This is the first large-scale characterization of the proteome of a plant rhizome. Implications of the findings were discussed in relation to other underground organs and related species.
RESUMEN
Homology-driven proteomics is a major tool to characterize proteomes of organisms with unsequenced genomes. This paper addresses practical aspects of automated homology-driven protein identifications by LC-MS/MS on a hybrid LTQ Orbitrap mass spectrometer. All essential software elements supporting the presented pipeline are either hosted at the publicly accessible web server, or are available for free download.