Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 575(7781): 185-189, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31659339

RESUMEN

Anatomically modern humans originated in Africa around 200 thousand years ago (ka)1-4. Although some of the oldest skeletal remains suggest an eastern African origin2, southern Africa is home to contemporary populations that represent the earliest branch of human genetic phylogeny5,6. Here we generate, to our knowledge, the largest resource for the poorly represented and deepest-rooting maternal L0 mitochondrial DNA branch (198 new mitogenomes for a total of 1,217 mitogenomes) from contemporary southern Africans and show the geographical isolation of L0d1'2, L0k and L0g KhoeSan descendants south of the Zambezi river in Africa. By establishing mitogenomic timelines, frequencies and dispersals, we show that the L0 lineage emerged within the residual Makgadikgadi-Okavango palaeo-wetland of southern Africa7, approximately 200 ka (95% confidence interval, 240-165 ka). Genetic divergence points to a sustained 70,000-year-long existence of the L0 lineage before an out-of-homeland northeast-southwest dispersal between 130 and 110 ka. Palaeo-climate proxy and model data suggest that increased humidity opened green corridors, first to the northeast then to the southwest. Subsequent drying of the homeland corresponds to a sustained effective population size (L0k), whereas wet-dry cycles and probable adaptation to marine foraging allowed the southwestern migrants to achieve population growth (L0d1'2), as supported by extensive south-coastal archaeological evidence8-10. Taken together, we propose a southern African origin of anatomically modern humans with sustained homeland occupation before the first migrations of people that appear to have been driven by regional climate changes.


Asunto(s)
Población Negra , Migración Humana/historia , Filogenia , Humedales , Población Negra/genética , Población Negra/historia , Clima , ADN Mitocondrial , Genoma Mitocondrial/genética , Haplotipos , Historia Antigua , Humanos , Densidad de Población , Lluvia , Estaciones del Año , Sudáfrica
3.
Genome Res ; 28(5): 726-738, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29618486

RESUMEN

Genomic rearrangements are common in cancer, with demonstrated links to disease progression and treatment response. These rearrangements can be complex, resulting in fusions of multiple chromosomal fragments and generation of derivative chromosomes. Although methods exist for detecting individual fusions, they are generally unable to reconstruct complex chained events. To overcome these limitations, we adopted a new optical mapping approach, allowing megabase-length genome maps to be reconstructed and rearranged genomes to be visualized without loss of integrity. Whole-genome mapping (Bionano Genomics) of a well-studied highly rearranged liposarcoma cell line resulted in 3338 assembled consensus genome maps, including 72 fusion maps. These fusion maps represent 112.3 Mb of highly rearranged genomic regions, illuminating the complex architecture of chained fusions, including content, order, orientation, and size. Spanning the junction of 147 chromosomal translocations, we found a total of 28 Mb of interspersed sequences that could not be aligned to the reference genome. Traversing these interspersed sequences using short-read sequencing breakpoint calls, we were able to identify and place 399 sequencing fragments within the optical mapping gaps, thus illustrating the complementary nature of optical mapping and short-read sequencing. We demonstrate that optical mapping provides a powerful new approach for capturing a higher level of complex genomic architecture, creating a scaffold for renewed interpretation of sequencing data of particular relevance to human cancer.


Asunto(s)
Mapeo Cromosómico/métodos , Variación Genética , Genoma Humano/genética , Neoplasias/genética , Línea Celular Tumoral , Aberraciones Cromosómicas , Fusión Génica , Reordenamiento Génico , Haplotipos , Humanos , Modelos Genéticos , Análisis de Secuencia de ADN/métodos
4.
Front Bioinform ; 3: 1232671, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38323038

RESUMEN

Introduction: When visualizing complex data, the layout method chosen can greatly affect the ability to identify outliers, spot incorrect modeling assumptions, or recognize unexpected patterns. Additionally, visual layout can play a crucial role in communicating results to peers. Methods: In this paper, we compared the effectiveness of three visual layouts-the adjacency matrix, a half-matrix layout, and a circular layout-for visualizing spatial connectivity data, e.g., contacts derived from chromatin conformation capture experiments. To assess these visual layouts, we conducted a study comprising 150 participants from Amazon's Mechanical Turk, as well as a second expert study comprising 30 biomedical research scientists. Results: The Mechanical Turk study found that the circular layout was the most accurate and intuitive, while the expert study found that the circular and half-matrix layouts were more accurate than the matrix layout. Discussion: We concluded that the circular layout may be a good default choice for visualizing smaller datasets with relatively few spatial contacts, while, for larger datasets, the half- matrix layout may be a better choice. Our results also demonstrated how crowdsourcing methods could be used to determine which visual layouts are best for addressing specific data challenges in bioinformatics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA