RESUMEN
Inherited thrombocytopenias (IT) are genetic diseases characterized by low platelet count, sometimes associated with congenital defects or a predisposition to develop additional conditions. Next-generation sequencing has substantially improved our knowledge of IT, with more than 40 genes identified so far, but obtaining a molecular diagnosis remains a challenge especially for patients with non-syndromic forms, having no clinical or functional phenotypes that raise suspicion about specific genes. We performed exome sequencing (ES) in a cohort of 116 IT patients (89 families), still undiagnosed after a previously validated phenotype-driven diagnostic algorithm including a targeted analysis of suspected genes. ES achieved a diagnostic yield of 36%, with a gain of 16% over the diagnostic algorithm. This can be explained by genetic heterogeneity and unspecific genotype-phenotype relationships that make the simultaneous analysis of all the genes, enabled by ES, the most reasonable strategy. Furthermore, ES disentangled situations that had been puzzling because of atypical inheritance, sex-related effects or false negative laboratory results. Finally, ES-based copy number variant analysis disclosed an unexpectedly high prevalence of RUNX1 deletions, predisposing to hematologic malignancies. Our findings demonstrate that ES, including copy number variant analysis, can substantially contribute to the diagnosis of IT and can solve diagnostic problems that would otherwise remain a challenge.
Asunto(s)
Pruebas Genéticas , Trombocitopenia , Humanos , Secuenciación del Exoma , Fenotipo , Pruebas Genéticas/métodos , Genotipo , Trombocitopenia/diagnóstico , Trombocitopenia/genéticaRESUMEN
The new techniques of genetic analysis have made it possible to identify many new forms of inherited thrombocytopenias (IT) and study large series of patients. In recent years, this has changed the view of IT, highlighting the fact that, in contrast to previous belief, most patients have a modest bleeding diathesis. On the other hand, it has become evident that some of the mutations responsible for platelet deficiency predispose the patient to serious, potentially lifethreatening diseases. Today's vision of IT is, therefore, very different from that of the past and the therapeutic approach must take these changes into account while also making use of the new therapies that have become available in the meantime. This review, the first devoted entirely to IT therapy, discusses how to prevent bleeding in those patients who are exposed to this risk, how to treat it if it occurs, and how to manage the serious illnesses to which patients with IT may be predisposed.
Asunto(s)
Trastornos de la Coagulación Sanguínea , Trombocitopenia , Plaquetas , Humanos , Mutación , Trombocitopenia/diagnóstico , Trombocitopenia/genética , Trombocitopenia/terapiaRESUMEN
Inherited thrombocytopenias (ITs) are a heterogeneous group of disorders characterized by low platelet count that may result in bleeding tendency. Despite progress being made in defining the genetic causes of ITs, nearly 50% of patients with familial thrombocytopenia are affected with forms of unknown origin. Here, through exome sequencing of 2 siblings with autosomal-recessive thrombocytopenia, we identified biallelic loss-of-function variants in PTPRJ . This gene encodes for a receptor-like PTP, PTPRJ (or CD148), which is expressed abundantly in platelets and megakaryocytes. Consistent with the predicted effects of the variants, both probands have an almost complete loss of PTPRJ at the messenger RNA and protein levels. To investigate the pathogenic role of PTPRJ deficiency in hematopoiesis in vivo, we carried out CRISPR/Cas9-mediated ablation of ptprja (the ortholog of human PTPRJ) in zebrafish, which induced a significantly decreased number of CD41+ thrombocytes in vivo. Moreover, megakaryocytes of our patients showed impaired maturation and profound defects in SDF1-driven migration and formation of proplatelets in vitro. Silencing of PTPRJ in a human megakaryocytic cell line reproduced the functional defects observed in patients' megakaryocytes. The disorder caused by PTPRJ mutations presented as a nonsyndromic thrombocytopenia characterized by spontaneous bleeding, small-sized platelets, and impaired platelet responses to the GPVI agonists collagen and convulxin. These platelet functional defects could be attributed to reduced activation of Src family kinases. Taken together, our data identify a new form of IT and highlight a hitherto unknown fundamental role for PTPRJ in platelet biogenesis.
Asunto(s)
Plaquetas/patología , Predisposición Genética a la Enfermedad , Megacariocitos/patología , Mutación , Trombocitopenia/patología , Adolescente , Adulto , Animales , Plaquetas/metabolismo , Sistemas CRISPR-Cas , Niño , Femenino , Estudios de Seguimiento , Hematopoyesis , Humanos , Masculino , Megacariocitos/metabolismo , Persona de Mediana Edad , Linaje , Pronóstico , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Trombocitopenia/etiología , Trombocitopenia/genética , Pez CebraRESUMEN
Patients with inherited thrombocytopenias often require platelet transfusions to raise their platelet count before surgery or other invasive procedures; moreover, subjects with clinically significant spontaneous bleeding may benefit from an enduring improvement of thrombocytopenia. The hypothesis that thrombopoietin-mimetics can increase platelet count in inherited thrombocytopenias is appealing, but evidence is scarce. We conducted a prospective, phase II clinical trial to investigate the efficacy of the oral thrombopoietin-mimetic eltrombopag in different forms of inherited thrombocytopenia. We enrolled 24 patients affected by MYH9-related disease, ANKRD26-related thrombocytopenia, X-linked thrombocytopenia/ Wiskott-Aldrich syndrome, monoallelic Bernard-Soulier syndrome, or ITGB3-related thrombocytopenia. The average pre-treatment platelet count was 40.4 ×109/L. Patients received a 3- to 6-week course of eltrombopag in a dose-escalated manner. Of 23 patients evaluable for response, 11 (47.8%) achieved a major response (platelet count >100 ×109/L), ten (43.5%) had a minor response (platelet count at least twice the baseline value), and two patients (8.7%) did not respond. The average increase of platelet count compared to baseline was 64.5 ×109/L (P<0.001). Four patients with clinically significant spontaneous bleeding entered a program of long-term eltrombopag administration (16 additional weeks): all of them obtained remission of mucosal hemorrhages, with the remission persisting throughout the treatment period. Treatment was globally well tolerated: five patients reported mild adverse events and one patient a moderate adverse event. In conclusion, eltrombopag was safe and effective in increasing platelet count and reducing bleeding symptoms in different forms of inherited thrombocytopenia. Despite these encouraging results, caution is recommended when using thrombopoietinmimetics in inherited thrombocytopenias predisposing to leukemia. ClinicalTrials.gov identifier: NCT02422394.
Asunto(s)
Hidrazinas , Trombocitopenia , Benzoatos/efectos adversos , Humanos , Hidrazinas/efectos adversos , Estudios Prospectivos , Pirazoles , Trombocitopenia/tratamiento farmacológicoRESUMEN
Inherited thrombocytopenias (ITs) are a heterogeneous group of syndromic and nonsyndromic diseases caused by mutations affecting different genes. Alterations of ACTN1, the gene encoding for α-actinin 1, have recently been identified in a few families as being responsible for a mild form of IT (ACTN1-related thrombocytopenia; ACTN1-RT). To better characterize this disease, we screened ACTN1 in 128 probands and found 10 (8 novel) missense heterozygous variants in 11 families. Combining bioinformatics, segregation, and functional studies, we demonstrated that all but 1 amino acid substitution had deleterious effects. The clinical and laboratory findings of 31 affected individuals confirmed that ACTN1-RT is a mild macrothrombocytopenia with low risk for bleeding. Low reticulated platelet counts and only slightly increased serum thrombopoietin levels indicated that the latest phases of megakaryopoiesis were affected. Given its relatively high frequency in our cohort (4.2%), ACTN1-RT has to be taken into consideration in the differential diagnosis of ITs.
Asunto(s)
Actinina/genética , Plaquetas/metabolismo , Mutación Missense , Fenotipo , Trombocitopenia/genética , Actinina/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Plaquetas/patología , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Expresión Génica , Genotipo , Heterocigoto , Humanos , Masculino , Persona de Mediana Edad , Linaje , Recuento de Plaquetas , Índice de Severidad de la Enfermedad , Trombocitopenia/metabolismo , Trombocitopenia/patología , Trombocitopenia/fisiopatología , Trombopoyesis/genética , Trombopoyetina/sangreRESUMEN
Since the beginning of the century, our knowledge of inherited thrombocytopenias greatly advanced, and we presently know 30 forms with well-defined genetic defects. This great advancement changed our view of these disorders, as we realized that most patients have only mild thrombocytopenia with inconspicuous bleeding or no bleeding tendency at all. However, better knowledge of inherited thrombocytopenias also revealed that some of the most prevalent forms expose to the risk of acquiring during infancy or adulthood additional disorders that endanger the life of patients much more than hemorrhages. Thus, inherited thrombocytopenias are complex disorders with quite different clinical features and prognosis. Identification of novel genes whose mutations result in low platelet count greatly advanced also our knowledge of the megakaryocyte biology and proved beyond any doubt that the defective proteins play an essential role in platelet biogenesis or survival in humans. Based on the study of inherited thrombocytopenias, we better understood the sequence of molecular events regulating megakaryocyte differentiation, maturation, and platelet release. Since nearly 50% of patients have as yet unidentified genetic or molecular mechanisms underlying their inherited thrombocytopenia, further studies are expected to reveal new clinical entities and new molecular mechanisms of platelet production.
Asunto(s)
Estudios de Asociación Genética , Trombocitopenia/etiología , Trombocitopenia/metabolismo , Animales , Plaquetas/metabolismo , Diferenciación Celular/genética , Supervivencia Celular/genética , Humanos , Megacariocitos/citología , Megacariocitos/metabolismo , Mutación , Fenotipo , Sitios de Carácter Cuantitativo , Trombocitopenia/diagnóstico , Trombopoyesis/genéticaRESUMEN
Abnormalities of platelet size are one of the distinguishing features of inherited thrombocytopenias (ITs), and evaluation of blood films is recommended as an essential step for differential diagnosis of these disorders. Nevertheless, what we presently know about this subject is derived mainly from anecdotal evidence. To improve knowledge in this field, we evaluated platelet size on blood films obtained from 376 patients with all 19 forms of IT identified so far and found that these conditions differ not only in mean platelet diameter, but also in platelet diameter distribution width and the percentage of platelets with increased or reduced diameters. On the basis of these findings, we propose a new classification of ITs according to platelet size. It distinguishes forms with giant platelets, with large platelets, with normal or slightly increased platelet size, and with normal or slightly decreased platelet size. We also measured platelet diameters in 87 patients with immune thrombocytopenia and identified cutoff values for mean platelet diameter and the percentage of platelets with increased or reduced size that have good diagnostic accuracy in differentiating ITs with giant platelets and with normal or slightly decreased platelet size from immune thrombocytopenia and all other forms of IT.
Asunto(s)
Plaquetas/patología , Trombocitopenia/sangre , Trombocitopenia/genética , Adolescente , Adulto , Estudios de Casos y Controles , Tamaño de la Célula , Niño , Preescolar , Diagnóstico Diferencial , Femenino , Pérdida Auditiva Sensorineural/sangre , Pérdida Auditiva Sensorineural/clasificación , Pérdida Auditiva Sensorineural/genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Proteínas Motoras Moleculares/genética , Mutación , Cadenas Pesadas de Miosina/genética , Púrpura Trombocitopénica Idiopática/sangre , Púrpura Trombocitopénica Idiopática/diagnóstico , Trombocitopenia/clasificación , Trombocitopenia/congénito , Adulto JovenAsunto(s)
COVID-19 , Pandemias , Antivirales/uso terapéutico , Humanos , Pandemias/prevención & control , SARS-CoV-2RESUMEN
Eltrombopag is a small, non-peptide thrombopoietin mimetic that has been approved for increasing platelet count not only in immune thrombocytopenia and Hepatitis C virus-related thrombocytopenia, but also in aplastic anemia. Moreover, this drug is under investigation for increasing platelet counts in myelodysplastic syndromes. Despite current clinical practice, the mechanisms governing eltrombopag's impact on human hematopoiesis are largely unknown, in part due to the impossibility of using traditional in vivo models. To investigate eltrombopag's impact on megakaryocyte functions, we employed our established in vitro model for studying hematopoietic stem cell differentiation combined with our latest 3-dimensional silk-based bone marrow tissue model. Results demonstrated that eltrombopag favors human megakaryocyte differentiation and platelet production in a dose-dependent manner. These effects are accompanied by increased phosphorylation of AKT and ERK1/2 signaling molecules, which have been proven to be crucial in regulating physiologic thrombopoiesis. These data further clarify the different mechanisms of action of eltrombopag when compared to romiplostim, which, as we have shown, induces the proliferation of immature megakaryocytes rather than platelet production, due to the unbalanced activation of AKT and ERK1/2 signaling molecules. In conclusion, our research clarifies the underlying mechanisms that govern the action of eltrombopag on megakaryocyte functions and its relevance in clinical practice.
Asunto(s)
Benzoatos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hidrazinas/farmacología , Megacariocitos/efectos de los fármacos , Megacariocitos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirazoles/farmacología , Transducción de Señal/efectos de los fármacos , Trombopoyesis/efectos de los fármacos , Biomarcadores , Plaquetas/citología , Plaquetas/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Megacariocitos/citología , Fenotipo , Receptores de Trombopoyetina/metabolismoRESUMEN
ETV6-related thrombocytopenia is an autosomal dominant thrombocytopenia that has been recently identified in a few families and has been suspected to predispose to hematologic malignancies. To gain further information on this disorder, we searched for ETV6 mutations in the 130 families with inherited thrombocytopenia of unknown origin from our cohort of 274 consecutive pedigrees with familial thrombocytopenia. We identified 20 patients with ETV6-related thrombocytopenia from seven pedigrees. They have five different ETV6 variants, including three novel mutations affecting the highly conserved E26 transformation-specific domain. The relative frequency of ETV6-related thrombocytopenia was 2.6% in the whole case series and 4.6% among the families with known forms of inherited thrombocytopenia. The degree of thrombocytopenia and bleeding tendency of the patients with ETV6-related thrombocytopenia were mild, but four subjects developed B-cell acute lymphoblastic leukemia during childhood, resulting in a significantly higher incidence of this condition compared to that in the general population. Clinical and laboratory findings did not identify any particular defects that could lead to the suspicion of this disorder from the routine diagnostic workup. However, at variance with most inherited thrombocytopenias, platelets were not enlarged. In vitro studies revealed that the maturation of the patients' megakaryocytes was defective and that the patients have impaired proplatelet formation. Moreover, platelets from patients with ETV6-related thrombocytopenia have reduced ability to spread on fibrinogen. Since the dominant thrombocytopenias due to mutations in RUNX1 and ANKRD26 are also characterized by normal platelet size and predispose to hematologic malignancies, we suggest that screening for ETV6, RUNX1 and ANKRD26 mutations should be performed in all subjects with autosomal dominant thrombocytopenia and normal platelet size.
Asunto(s)
Predisposición Genética a la Enfermedad/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/etiología , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Represoras/genética , Trombocitopenia/genética , Adolescente , Adulto , Transformación Celular Neoplásica/genética , Niño , Preescolar , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Familia , Humanos , Lactante , Recién Nacido , Péptidos y Proteínas de Señalización Intercelular , Persona de Mediana Edad , Mutación , Proteínas Nucleares/genética , Linaje , Trombocitopenia/patología , Adulto Joven , Proteína ETS de Variante de Translocación 6RESUMEN
Several hundreds of studies recently investigated mean platelet volume (MPV) as measured by electronic cell counters in a wide variety of acquired diseases, and most of them found that platelet size was significantly increased with respect to healthy subjects. On this basis, it has been suggested that MPV can be used for diagnostic purposes. Moreover, investigation of subjects with arterial thrombosis not only revealed that their platelets were larger than those of controls, but also found that a high MPV predicted poor prognosis. Despite the large amount of available data, the pathogenesis of increased platelet size in these conditions is unclear. In particular, we do not know whether the increased platelet size is the cause or the consequence of thrombosis. Differences in MPV between patients and controls are usually very small and they reach the statistical significance because of the large number of investigated patients and the standardized methodology for MPV measurement. In real life, the wide variability of MPV possibly due to platelet count, sex, age, and ethnicity, as well as the very poor standardization of the methodologies used for MPV measurement, makes it impossible to decide whether an individual patient has normal or instead slightly increased MPV. So, MPV has presently no role in making diagnosis and defining prognosis in any acquired illness.