Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 29(28): e202300134, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-36856040

RESUMEN

The on-surface dimerization into bis(hexahelicene) on a gold(111) surface has been studied by means of scanning tunneling microscopy and time-of-flight secondary mass spectrometry. C-C Ullmann coupling of (rac)-2-bromo-hexahelicene leads to formation of the (M,M)- and (P,P)-diastereomers of 2,2'-bis(hexahelicene), whilst formation of the (M,P)-diastereomer is not observed. Upon cooling, the bis(hexahelicene) aggregates into an ordered two-dimensional lattice with partly randomly distributed enantiomers. The highly specific diastereomeric coupling is explained by the surface alignment of educt in combination with the strong steric overcrowding in a possible surface-confined (M,P)-product.

2.
Chemistry ; 27(54): 13523-13526, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34387926

RESUMEN

Flattening helices while keeping the handedness: On-surface cyclodehydrogenation of bishelicene enantiomers leads stereospecifically to (M,M) and (P,P) chiral planar polyaromatic hydrocarbons. This is followed by their homochiral aggregation into a 2D conglomerate. Thermally induced cyclodehydrogenation proceeds stereospecifically to chiral, planar coronocoronene. Such a reaction is a special example of topochemistry in which enantiospecific conversion is supported by the alignment of the reactant by the surface.

3.
Chemistry ; 27(40): 10251-10254, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34042228

RESUMEN

The chiral self-assembly of trispentahelicene propellers on a gold surface has been investigated in ultrahigh vacuum by means of scanning tunneling microscopy and time-of-flight secondary ion mass spectrometry. The trispentahelicene propellers aggregate into mirror domains with an enantiomeric ratio of 2 : 1. Thermally induced cyclodehydrogenation leads to planarization into nanographenes, which self-assemble into closed-packed layers with two different azimuths. Further treatment induces in part dimerization and trimerization by intermolecular cyclodehydrogenation.

4.
Angew Chem Int Ed Engl ; 57(33): 10584-10588, 2018 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-29888847

RESUMEN

A trifunctional, partially fluorinated anthracene-substituted triptycene monomer was spread at an air/water interface into a monolayer, which was transformed into a long-range-ordered 2D polymer by irradiation with a standard UV lamp. The polymer was analyzed by Brewster angle microscopy, scanning tunneling microscopy measurements, and non-contact atomic force microscopy, which confirmed the generation of a network structure with lattice parameters that are virtually identical to a structural model network based on X-ray diffractometry of a closely related 2D polymer. The nc-AFM images highlight the long-range order over areas of at least 300×300 nm2 . As required for a 2D polymer, the pore sizes are monodisperse, except for the regions where the network is somewhat stretched because it spans over protrusions. Together with a previous report on the nature of the cross-links in this network, the structural information provided herein leaves no doubt that a 2D polymer has been synthesized under ambient conditions at an air/water interface.

5.
Angew Chem Int Ed Engl ; 56(46): 14395-14399, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-28846210

RESUMEN

A flexible and versatile method to fabricate two-dimensional metal-organic coordination networks (MOCNs) by bottom-up self-assembly is described. 2D crystalline layers were formed at the air-water interface, coordinated by ions from the liquid phase, and transferred onto a solid substrate with their crystallinity preserved. By using an inherently three-dimensional amphiphile, namely 25,26,27,28-tetrapropoxycalix[4]arene-5,11,17,23-tetracarboxylic acid, and a copper metal node, large and monocrystalline dendritic MOCN domains were formed. The method described allows for the fabrication of monolayers of tunable crystallinity on liquid and solid substrates. It can be applied to a large range of differently functionalized organic building blocks, also beyond macrocycles, which can be interconnected by diverse metal nodes.

6.
Angew Chem Int Ed Engl ; 56(48): 15262-15266, 2017 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28922539

RESUMEN

This work describes a two-dimensional polymerization at an air/water interface and provides, for the first time, direct spectroscopic evidence for the kind of crosslinks formed and for the conversion reached in a covalently bonded monolayer sheet. This evidence was obtained through a combination of a variety of monolayer characterization techniques before and after transfer onto solid substrates, in particular by tip-enhanced Raman spectroscopy (TERS) and TERS mapping after transfer of both the monomer and polymer monolayer onto Au(111). This work is a major advance for the field of 2D polymers synthesized at the air/water interface as it, in principle, allows estimation of the crystallinity by percolation theory and the location of regions with defects.

7.
Phys Chem Chem Phys ; 17(15): 9666-79, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25660349

RESUMEN

A large number of computational studies have been devoted to the investigation of monometallic clusters supported by MgO. However, in practice, catalysis shows that multicomponent catalytic systems often win in catalytic performance over single component systems. In this study, the geometrical and electronic structure, stability and chemisorption properties of M1M2 metal dimers (M1, M2 = Ru, Rh, Pd, Ir, Pt) supported by defect free MgO(001) have been investigated in the framework of density functional theory. The oxygen sites of MgO(001) are the preferred adsorption sites for all the studied clusters, the majority of them adsorbing parallel to the surface with metal atoms attached to two surface oxygen atoms. The energetics of M1M2 + MgO(001) formation shows that the adsorption complexes are stable and benefit from metal-oxygen and metal-metal interaction. The chemisorption properties of Pd and Pt atoms in PdM2 and PtM2 dimers are studied using CO as a probe molecule. A linear relationship between the CO chemisorption and the d-band center position of the reacting atom in the dimer is observed, extending the d-band center model to the case of highly under-coordinated metal atoms supported by a non-conductive material.

8.
ACS Nano ; 14(12): 16735-16742, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-32687321

RESUMEN

Functionalization of surfaces with derivatives of Buckminsterfullerene fragment molecules seems to be a promising approach toward bottom-up fabrication of carbon nanotube modified electrode surfaces. The modification of a Cu(100) surface with molecules of the buckybowl pentaindenocorannulene has been studied by means of scanning tunneling microscopy, carbon monoxide-modified noncontact atomic force microscopy, time-of-flight secondary mass spectrometry, and quantum chemical calculations. Two different adsorbate modes are identified, in which the majority is oriented such that the bowl cavity points away from the surface and the convex side is partially immersed into a four-atom vacancy in the Cu(100) surface. A minority is oriented such that the convex side points away from the surface with the five benzo tabs oriented basically parallel to the surface. Thermal annealing leads to hydrogenation and planarization of the molecules in two steps under specific C-C bond cleavage. The benzo tabs of the convex side up species serve as a hydrogen source. The final product has an open-shell electron structure that is quenched on the surface.

9.
Chem Sci ; 10(10): 2998-3004, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30996879

RESUMEN

The on-surface synthesis of bisheptahelicene by Ullmann coupling of 9-bromoheptahelicene on Au(111) and its temperature-induced dehydrogenation is studied using temperature-programmed reaction spectroscopy and time-of-flight secondary ion mass spectrometry. Specific dehydrogenation products of bisheptahelicene after loss of 6, 8 and 10 hydrogen atoms are identified, corresponding to molecules having undergone Diels-Alder transformations and intramolecular C-C coupling reactions. By combining with atomic hydrogen produced by dehydrogenation, the Ullmann coupling side-product bromine desorbs as HBr. H2 desorption emerges only after all Br has desorbed. Such characteristic behavior is explained by a kinetic model which explicitly considers the coverage of transient atomic H on the surface. Heating experiments performed with saturated layers of different Br-containing molecules reveal that the onset of HBr desorption depends strictly on the dehydrogenation step and therefore on the structure of the molecules.

10.
Sci Adv ; 5(2): eaav4489, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30801017

RESUMEN

Stable, single-nanometer thin, and free-standing two-dimensional layers with controlled molecular architectures are desired for several applications ranging from (opto-)electronic devices to nanoparticle and single-biomolecule characterization. It is, however, challenging to construct these stable single molecular layers via self-assembly, as the cohesion of those systems is ensured only by in-plane bonds. We herein demonstrate that relatively weak noncovalent bonds of limited directionality such as dipole-dipole (-CN⋅⋅⋅NC-) interactions act in a synergistic fashion to stabilize crystalline monomolecular layers of tetrafunctional calixarenes. The monolayers produced, demonstrated to be free-standing, display a well-defined atomic structure on the single-nanometer scale and are robust under a wide range of conditions including photon and electron radiation. This work opens up new avenues for the fabrication of robust, single-component, and free-standing layers via bottom-up self-assembly.

11.
ACS Nano ; 12(1): 768-778, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29272579

RESUMEN

Quantum devices depend on addressable elements, which can be modified separately and in their mutual interaction. Self-assembly at surfaces, for example, formation of a porous (metal-) organic network, provides an ideal way to manufacture arrays of identical quantum boxes, arising in this case from the confinement of the electronic (Shockley) surface state within the pores. We show that the electronic quantum box state as well as the interbox coupling can be modified locally to a varying extent by a selective choice of adsorbates, here C60, interacting with the barrier. In view of the wealth of differently acting adsorbates, this approach allows for engineering quantum states in on-surface network architectures.

12.
Adv Mater ; 29(27)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28485053

RESUMEN

A Langmuir-Blodgett film consisting of a dense array of trifunctional monomers bearing three 1,8-diazaanthracene units is polymerized at an air/water interface or after transfer on solid substrates. The transfer does not affect the excimer fluorescence of the film, indicating that the monomers' packing with their diazaanthracene units stacked face-to-face is retained-a prerequisite for successful polymerization. The monomer film can be polymerized in confined areas on solid substrates by UV irradiation with a confocal microscope laser. The underlying chemistry of the polymerization, a [4+4]-cycloaddition of the diazaanthracene units, leads to disappearance of the fluorescence in the irradiated regions which enables writing into the monolayer on a µm scale-thus the term "molecular paper." The reaction can be reversed by heating which leads to a recovery of the fluorescence and to erasing of the writing. Alternative pathways for this phenomenon are discussed and control experiments are conducted to rule them out.

13.
Nat Commun ; 8: 15388, 2017 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-28530247

RESUMEN

Realization of long-range magnetic order in surface-supported two-dimensional systems has been challenging, mainly due to the competition between fundamental magnetic interactions as the short-range Kondo effect and spin-stabilizing magnetic exchange interactions. Spin-bearing molecules on conducting substrates represent a rich platform to investigate the interplay of these fundamental magnetic interactions. Here we demonstrate the direct observation of long-range ferrimagnetic order emerging in a two-dimensional supramolecular Kondo lattice. The lattice consists of paramagnetic hexadeca-fluorinated iron phthalocyanine (FeFPc) and manganese phthalocyanine (MnPc) molecules co-assembled into a checkerboard pattern on single-crystalline Au(111) substrates. Remarkably, the remanent magnetic moments are oriented in the out-of-plane direction with significant contribution from orbital moments. First-principles calculations reveal that the FeFPc-MnPc antiferromagnetic nearest-neighbour coupling is mediated by the Ruderman-Kittel-Kasuya-Yosida exchange interaction via the Au substrate electronic states. Our findings suggest the use of molecular frameworks to engineer novel low-dimensional magnetically ordered materials and their application in molecular quantum devices.

14.
Chem Commun (Camb) ; 49(91): 10736-8, 2013 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-24104192

RESUMEN

On-surface assembly of a spin-bearing and non-aromatic porphyrin-related synthetic Co(II)-complex on a ferromagnetic Ni thin film substrate and subsequent magnetic exchange interaction across the interface were studied by scanning tunnelling microscopy (STM), X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD) and density functional theory +U (DFT + U) calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA