Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Fish Shellfish Immunol ; 141: 108999, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37604264

RESUMEN

TIAR, is a nucleic acid binding protein involved in the formation of cytoplasmic foci known as stress granules, in which mRNA translation is temporarily blocked in response to stressful conditions. TIAR is used as stress granules molecular marker in vertebrates, but it is not so deeply investigated in invertebrates, especially in marine organisms. In the present work, we investigated the role of TIAR in the colonial ascidian Botryllus schlosseri during its non-embryonic development, featured by the cyclical renewal of the colony. We studied the extent of transcription during the colonial blastogenetic cycle and the location of the transcripts in Botryllus tissues. Using an anti-TIAR antibody specific for ascidians, by immunocytochemistry and immunohistochemistry assays, we studied the expression of the protein in haemolymph cells and body tissues and by transmission electron microscopy we identified its subcellular localisation. The anti-TIAR antibody was also microinjected in the circulatory system of B. schlosseri to study its effect on non-embryonic development and immune responses. Results indicate a delay in the progression of the blastogenetic cycle in injected colonies. In addition, degranulation of circulating cytotoxic cells and phagocytosis by professional, circulating phagocytes, two fundamental processes of innate immunity, were also negatively affected.

2.
Mar Drugs ; 21(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36976220

RESUMEN

Botryllus schlosseri in a cosmopolitan ascidian, considered a reliable model organism for studies on the evolution of the immune system. B. schlosseri rhamnose-binding lectin (BsRBL) is synthesised by circulating phagocytes and behaves as an opsonin by interacting with foreign cells or particles and acting as a molecular bridge between them and the phagocyte surface. Although described in previous works, many aspects and roles of this lectin in Botryllus biology remain unknown. Here, we studied the subcellular distribution of BsRBL during immune responses using light and electron microscopy. In addition, following the hints from extant data, suggesting a possible role of BsRBL in the process of cyclical generation change or takeover, we investigated the effects of interfering with this protein, by injecting a specific antibody in the colonial circulation, starting one day before the generation change. Results confirm the requirement of the lectin for a correct generation change and open new queries on the roles of this lectin in Botryllus biology.


Asunto(s)
Lectinas , Urocordados , Animales , Lectinas/farmacología , Ramnosa/farmacología , Urocordados/metabolismo , Fagocitosis , Fagocitos
3.
Mar Drugs ; 21(2)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36827115

RESUMEN

By mining the transcriptome of the colonial ascidian Botryllus schlosseri, we identified a transcript for a novel styelin-like antimicrobial peptide, which we named botryllin. The gene is constitutively transcribed by circulating cytotoxic morula cells (MCs) as a pre-propeptide that is then cleaved to mature peptide. The synthetic peptide, obtained from in silico translation of the transcript, shows robust killing activity of bacterial and unicellular yeast cells, causing breakages of both the plasma membrane and the cell wall. Specific monoclonal antibodies were raised against the epitopes of the putative amino acid sequence of the propeptide and the mature peptide; in both cases, they label the MC granular content. Upon MC degranulation induced by the presence of nonself, the antibodies recognise the extracellular nets with entrapped bacteria nearby MC remains. The obtained results suggest that the botryllin gene carries the information for the synthesis of an AMP involved in the protection of B. schlosseri from invading foreign cells.


Asunto(s)
Urocordados , Animales , Urocordados/metabolismo , Péptidos Antimicrobianos , Secuencia de Aminoácidos , Transcriptoma
4.
Mar Drugs ; 20(4)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35447892

RESUMEN

Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010-2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders. We also describe omics tools that have been more relevant in identifying and understanding mechanisms and processes underlying the biosynthesis of secondary metabolites in marine invertebrates. Since there is increasing attention on finding new solutions for a sustainable large-scale supply of bioactive compounds, we propose that a possible improvement in the biodiscovery pipeline might also come from the study and utilization of aquatic invertebrate stem cells.


Asunto(s)
Productos Biológicos , Animales , Organismos Acuáticos/metabolismo , Materiales Biocompatibles/metabolismo , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Equinodermos , Invertebrados/metabolismo , Biología Marina
5.
Dev Biol ; 448(2): 293-308, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30217596

RESUMEN

In the second half of the eighteenth century, Schlosser and Ellis described the colonial ascidian Botryllus schlosseri garnering the interest of scientists around the world. In the 1950's scientists began to study B. schlosseri and soon recognized it as an important model organism for the study of developmental biology and comparative immunology. In this review, we summarize the history of B. schlosseri studies and experiments performed to characterize the colony life cycle and bud development. We describe experiments performed to analyze variations in bud productivity, zooid growth and bilateral asymmetry (i.e., the situs viscerum), and discuss zooid and bud removal experiments that were used to study the cross-talk between consecutive blastogenetic generations and vascular budding. We also summarize experiments that demonstrated that the ability of two distinct colonies to fuse or reject is controlled by a single polymorphic gene locus (BHF) with multiple, codominantly expressed alleles. Finally, we describe how the ability to fuse and create chimeras was used to show that within a chimera somatic and germline stem cells compete to populate niches and regenerate tissue or germline organs. Starting from the results of these 60 years of study, we can now use new technological advances to expand the study of B. schlosseri traits and understand functional relationships between its genome and life history phenotypes.


Asunto(s)
Estadios del Ciclo de Vida , Investigación , Urocordados/embriología , Animales , Regeneración , Reproducción , Células Madre/citología , Urocordados/anatomía & histología , Urocordados/genética
7.
BMC Genomics ; 17: 275, 2016 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-27038623

RESUMEN

BACKGROUND: We performed an analysis of the transcriptome during the blastogenesis of the chordate Botryllus schlosseri, focusing in particular on genes involved in cell death by apoptosis. The tunicate B. schlosseri is an ascidian forming colonies characterized by the coexistence of three blastogenetic generations: filter-feeding adults, buds on adults, and budlets on buds. Cyclically, adult tissues undergo apoptosis and are progressively resorbed and replaced by their buds originated by asexual reproduction. This is a feature of colonial tunicates, the only known chordates that can reproduce asexually. RESULTS: Thanks to a newly developed web-based platform ( http://botryllus.cribi.unipd.it ), we compared the transcriptomes of the mid-cycle, the pre-take-over, and the take-over phases of the colonial blastogenetic cycle. The platform is equipped with programs for comparative analysis and allows to select the statistical stringency. We enriched the genome annotation with 11,337 new genes; 581 transcripts were resolved as complete open reading frames, translated in silico into amino acid sequences and then aligned onto the non-redundant sequence database. Significant differentially expressed genes were classified within the gene ontology categories. Among them, we recognized genes involved in apoptosis activation, de-activation, and regulation. CONCLUSIONS: With the current work, we contributed to the improvement of the first released B. schlosseri genome assembly and offer an overview of the transcriptome changes during the blastogenetic cycle, showing up- and down-regulated genes. These results are important for the comprehension of the events underlying colony growth and regression, cell proliferation, colony homeostasis, and competition among different generations.


Asunto(s)
Reproducción Asexuada/genética , Transcriptoma , Urocordados/genética , Animales , Apoptosis/genética , Muerte Celular , Mapeo Cromosómico , Biblioteca de Genes , Genoma , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Urocordados/crecimiento & desarrollo
8.
Genesis ; 53(1): 105-20, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25044771

RESUMEN

The colonial tunicate Botryllus schlosseri is a widespread filter-feeding ascidian that lives in shallow waters and is easily reared in aquaria. Its peculiar blastogenetic cycle, characterized by the presence of three blastogenetic generations (filtering adults, buds, and budlets) and by recurrent generation changes, has resulted in over 60 years of studies aimed at understanding how sexual and asexual reproduction are coordinated and regulated in the colony. The possibility of using different methodological approaches, from classical genetics to cell transplantation, contributed to the development of this species as a valuable model organism for the study of a variety of biological processes. Here, we review the main studies detailing rearing, staging methods, reproduction and colony growth of this species, emphasizing the asymmetry in sexual and asexual reproduction potential, sexual reproduction in the field and the laboratory, and self- and cross-fertilization. These data, opportunely matched with recent tanscriptomic and genomic outcomes, can give a valuable help to the elucidation of some important steps in chordate evolution.


Asunto(s)
Reproducción Asexuada , Reproducción , Urocordados/fisiología , Animales , Evolución Biológica , Femenino , Células Germinativas/citología , Masculino
9.
Dev Comp Immunol ; : 105271, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39306217

RESUMEN

In the colonial ascidian Botryllus schlosseri, phagocytes are involved in the clearance of apoptotic cells and corpses during the periodical generation changes or takeovers (TOs) that assure the renewal of the colonial zooids. The persistent respiratory burst associated with efferocytosis, leads to the induction of senescence. Indeed, giant, senescent phagocytes are abundant in the colonial circulation at TO, whereas, in the other phases of the colonial blastogenetic cycle, they colonise the ventral islands (VIs), a series of mesenchymal niches located in the lateral lacunae of the mantle, on both sides of the subendostylar sinus. VI phagocytes produce reactive oxygen species probably as a consequence of the massive phagocytosis of effete cells. VIs are progressively dismantled with the progress of the blastogenetic phases and phagocytes are released in the peribranchial chamber via transepithelial expulsion to be definitely expelled with the outflowing water through the cloacal siphon.

10.
Front Cell Dev Biol ; 12: 1414759, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149517

RESUMEN

Controlling global protein synthesis through the assembly of stress granules represents a strategy adopted by eukaryotic cells to face various stress conditions. TIA 1-related nucleolysin (TIAR), tristetraprolin (TTP), and Ras-GTPase-activating protein SH3-domain-binding protein (G3BP) are key components of stress granules, allowing the regulation of mRNA stability, and thus controlling not only stress responses but also cell proliferation and differentiation. In this study, we aimed at investigating the roles of tiar, ttp, and g3bp during embryogenesis of the solitary ascidian Ciona robusta under both physiological and stress conditions. We carried out CRISPR/Cas9 to evaluate the effects of gene knockout on normal embryonic development, and gene reporter assay to study the time and tissue specificity of gene transcription, together with whole-mount in situ hybridization and quantitative real time PCR. To induce acute stress conditions, we used iron and cadmium as "essential" and "non-essential" metals, respectively. Our results highlight, for the first time, the importance of tiar, ttp, and g3bp in controlling the development of mesendodermal tissue derivatives during embryogenesis of an invertebrate chordate.

11.
Biol Rev Camb Philos Soc ; 99(1): 131-176, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37698089

RESUMEN

Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.


Asunto(s)
Artrópodos , Ecosistema , Animales , Humanos , Invertebrados
12.
J Invertebr Pathol ; 112(3): 260-6, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23262395

RESUMEN

Tunicates are chordate invertebrates, closely related to vertebrates, which represent valuable organisms for the study of a variety of biological processes from an evolutionary point of view. As invertebrates, they rely on innate immunity to cope with foreign, potentially pathogenic material. Among tunicates, the compound ascidian Botryllus schlosseri is emerging as a reliable model organism for the study of innate immune responses. However, there is a general lack of knowledge on the signalling pathways activated during immune responses and, in particular, in phagocytosis. In the present work, we carried out a preliminary investigation of the signalling pathways involved in phagocytosis, with particular reference to MAPK activation. We studied in vitro zymosan phagocytosis in the presence of manumycin A, which inhibit the activation of Ras, PD98059, SP600125 and SB202190, inhibitors of Erk, JNK and p38, respectively, parthenolide, N-acetyl-l-cysteine (NAC) and pyrrolidine dithiocarbamate (PDTC), inhibiting NF-kB activation. In addition we carried out immunoblot and immunocytochemistry analysis with the use of anti-pErk1/2, anti-pp38, anti-pJNK, anti-NF-kB (p50) and anti-pan Ras antibodies. Results demonstrate that the recognition of foreign cells triggers a phosphorylation cascade leading to the activation of Ras-like small GTPases, MAPKs and NF-kB and argue in favour of a conservation, also in ascidians, of the main signalling pathways.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Fagocitosis/fisiología , Urocordados/metabolismo , Animales , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , FN-kappa B/antagonistas & inhibidores , Fagocitosis/efectos de los fármacos , Fosforilación , Polienos/farmacología , Alcamidas Poliinsaturadas/farmacología , Transducción de Señal/efectos de los fármacos , Urocordados/citología , Urocordados/efectos de los fármacos , Urocordados/fisiología , Zimosan/metabolismo
13.
Methods Mol Biol ; 2450: 27-48, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359301

RESUMEN

Ascidians are sessile tunicates, that is, marine animals belonging to the phylum Chordata and considered the sister group of vertebrates. They are widespread in all the seas, constituting abundant communities in various ecosystems. Among chordates, only tunicates are able to reproduce asexually, forming colonies. The high regenerative potentialities enabling tunicates to regenerate damaged body parts, or the whole body, represent a peculiarity of this taxon. Here we review the methodological approaches used in more than a century of biological studies to induce regeneration in both solitary and colonial species. For solitary species, we refer to the regeneration of single organs or body parts (e.g., siphon, brain, gonad, tunic, viscera). For colonial species, we review a plethora of experiments regarding the surgical manipulation of colonies, the regeneration of isolated colonial entities, such as single buds in the tunic, or part of tunic and its circulatory system.


Asunto(s)
Urocordados , Animales , Ecosistema , Gónadas , Vertebrados
14.
Biol Rev Camb Philos Soc ; 97(1): 299-325, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34617397

RESUMEN

Adult stem cells (ASCs) in vertebrates and model invertebrates (e.g. Drosophila melanogaster) are typically long-lived, lineage-restricted, clonogenic and quiescent cells with somatic descendants and tissue/organ-restricted activities. Such ASCs are mostly rare, morphologically undifferentiated, and undergo asymmetric cell division. Characterized by 'stemness' gene expression, they can regulate tissue/organ homeostasis, repair and regeneration. By contrast, analysis of other animal phyla shows that ASCs emerge at different life stages, present both differentiated and undifferentiated phenotypes, and may possess amoeboid movement. Usually pluri/totipotent, they may express germ-cell markers, but often lack germ-line sequestering, and typically do not reside in discrete niches. ASCs may constitute up to 40% of animal cells, and participate in a range of biological phenomena, from whole-body regeneration, dormancy, and agametic asexual reproduction, to indeterminate growth. They are considered legitimate units of selection. Conceptualizing this divergence, we present an alternative stemness metaphor to the Waddington landscape: the 'wobbling Penrose' landscape. Here, totipotent ASCs adopt ascending/descending courses of an 'Escherian stairwell', in a lifelong totipotency pathway. ASCs may also travel along lower stemness echelons to reach fully differentiated states. However, from any starting state, cells can change their stemness status, underscoring their dynamic cellular potencies. Thus, vertebrate ASCs may reflect just one metazoan ASC archetype.


Asunto(s)
Células Madre Adultas , Drosophila melanogaster , Animales , Diferenciación Celular , Fenotipo
15.
J Exp Zool B Mol Dev Evol ; 316(4): 284-95, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21246708

RESUMEN

Monoclonal antibodies were raised against hemocytes of the colonial ascidian Botryllus schlosseri as possible tools to study hemocyte differentiation. In this species, blood cells are involved in various biological functions, such as immunosurveillance, encapsulation of foreign bodies, metal accumulation, and allorecognition. The latter process drives the fusion or rejection of contacting colonies, according to whether they do or do not share at least one allele at the fusibility/histocompatibility (Fu/HC) locus. Hemocytes take part in the rejection reaction, which suggests that they express molecules, coded by the Fu/HC locus, on their surface. A homozygous colony at the Fu/HC locus was used to produce the antibodies, which were screened by immunocytochemistry on hemocyte monolayers, immunohistochemistry on colony paraffin sections, and immunoblotting on colony homogenates. Here, we report on one of the obtained antibodies (1D8), which recognized a surface epitope on hemocytes of the donor colony and other colonies, apparently in a manner specific to the Fu/HC genotype. It also labeled a single 80-kDa band in colony homogenates. In addition, it specifically recognized tunic cells, germ cells, and their accessory cells. These results strengthen the assumption of a close relationship among these types of cells and blood cells, and suggest a close relationship among the above cells, probably deriving from undifferentiated blood cells.


Asunto(s)
Diferenciación Celular/fisiología , Células Germinativas/fisiología , Hemocitos/fisiología , Urocordados/fisiología , Animales , Anticuerpos Monoclonales , Diferenciación Celular/inmunología , Electroforesis en Gel de Poliacrilamida , Células Germinativas/inmunología , Hemocitos/inmunología , Immunoblotting , Inmunohistoquímica , Urocordados/inmunología
16.
Fish Shellfish Immunol ; 31(3): 423-31, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21712093

RESUMEN

For deeper insights into the function of crustacean haemocytes in immune responses, we studied the morphology and enzyme content of circulating cells of the mantis shrimp Squilla mantis from the North Adriatic Sea, together with their ability to phagocytose foreign cells. We also assayed the enzyme content and the agglutinating and haemolytic activities of cell-free haemolymph. Three haemocyte types, i.e., hyalinocytes, semigranulocytes and granulocytes, can be distinguished, according to cell and nuclear morphology and the presence of cytoplasmic granules. All of them share the same patterns of enzyme activities and are recognised by the same lectins. Spreading cells (hyalinocytes and semigranulocytes) can ingest foreign cells; granules of semigranular and granular cells have similar cytochemical properties. Injection of Micrococcus luteus into the heart sinus results in an increase in the frequency of hyaline cells and a decrease in the frequency of granulocytes. After 24 h from the injection, a decrease in the number of phagocytosing hyalinocytes, and a general decrease in the frequency of acid phosphatase-positive cells was reported. Our data match previous results and suggest the existence of a single differentiation pathway for Squilla haemocytes with the three haemocyte morphs as different stages of cell differentiation. Results also indicate that Squilla haemolymph performs immunosurveillance, through rapid changes in haemocyte distribution, increase of antimicrobial and antioxidant enzymes and secretion of lectins stimulating agglutination, phagocytosis and encapsulation.


Asunto(s)
Crustáceos/inmunología , Inmunidad Celular/fisiología , Inmunidad Humoral/fisiología , Inmunidad Innata/fisiología , Animales , Crustáceos/fisiología , Hemocitos/fisiología , Fagocitosis
17.
Biology (Basel) ; 10(4)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921845

RESUMEN

Although still scarcely considered by the majority of the biomedical world, invertebrates have greatly contributed to the elucidation of fundamental biological problems [...].

18.
Antioxidants (Basel) ; 11(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35052596

RESUMEN

Typical 2-Cys peroxiredoxins (2-Cys Prdxs) are proteins with antioxidant properties belonging to the thioredoxin peroxidase family. With their peroxidase activity, they contribute to the homeostatic control of reactive oxygen species (ROS) and, therefore, participate in various physiological functions, such as cell proliferation, differentiation, and apoptosis. Although Prdxs have been shown to be potential biomarkers for monitoring aquatic environments, minimal scientific attention has been devoted to describing their molecular architecture and function in marine invertebrates. Our study aims to clarify the protective role against stress induced by exposure to metals (Cu, Zn, and Cd) of three Prdxs (Prdx2, Prdx3, and Prdx4) in the solitary ascidian Ciona robusta, an invertebrate chordate. Here, we report a detailed pre- and post-translational regulation of the three Prdx isoforms. Data on intestinal mRNA expression, provided by qRT-PCR analyses, show a generalized increase for Prdx2, -3, and -4, which is correlated to metal accumulation. Furthermore, the increase in tissue enzyme activity observed after Zn exposure is slower than that observed with Cu and Cd. The obtained results increase our knowledge of the evolution of anti-stress proteins in invertebrates and emphasize the importance of the synthesis of Prdxs as an efficient way to face adverse environmental conditions.

19.
Front Immunol ; 12: 688106, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276677

RESUMEN

The scopes related to the interplay between stem cells and the immune system are broad and range from the basic understanding of organism's physiology and ecology to translational studies, further contributing to (eco)toxicology, biotechnology, and medicine as well as regulatory and ethical aspects. Stem cells originate immune cells through hematopoiesis, and the interplay between the two cell types is required in processes like regeneration. In addition, stem and immune cell anomalies directly affect the organism's functions, its ability to cope with environmental changes and, indirectly, its role in ecosystem services. However, stem cells and immune cells continue to be considered parts of two branches of biological research with few interconnections between them. This review aims to bridge these two seemingly disparate disciplines towards much more integrative and transformative approaches with examples deriving mainly from aquatic invertebrates. We discuss the current understanding of cross-disciplinary collaborative and emerging issues, raising novel hypotheses and comments. We also discuss the problems and perspectives of the two disciplines and how to integrate their conceptual frameworks to address basic equations in biology in a new, innovative way.


Asunto(s)
Organismos Acuáticos/inmunología , Sistema Inmunológico/inmunología , Inmunidad Innata , Células Madre/inmunología , Biología de Sistemas , Alergia e Inmunología , Organismos Acuáticos/citología , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Comunicación Celular , Genómica , Sistema Inmunológico/citología , Sistema Inmunológico/metabolismo , Biología Marina , Transducción de Señal , Células Madre/metabolismo
20.
Sci Total Environ ; 771: 144565, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33736145

RESUMEN

Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.


Asunto(s)
Ecotoxicología , Contaminantes Químicos del Agua , Animales , Organismos Acuáticos , Humanos , Invertebrados , Reproducibilidad de los Resultados , Células Madre , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA