Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 248: 118408, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38311205

RESUMEN

Climate change and population ageing are converging challenges that are expected to significantly worsen the health impacts of high temperatures. We aimed to remeasure the implications of ageing for heat-related mortality by comparing time trends based on chronological age (number of years already lived) with those derived from the application of state-of-the-art demographic methodology which better captures the dynamics of evolving longevity: prospective age (number of years still to be lived). We conducted a nationwide time-series analysis of 13 regions in Spain over 1980-2018 using all-cause mortality microdata for people aged 65+ and annual life tables from the Spanish National Institute of Statistics, and daily mean temperatures from E-OBS. Based on confounder-adjusted quasi-Poisson regression with distributed lag non-linear models and multivariate meta-analysis in moving 15-year timeslices, we assessed sex-specific changes in absolute risk and impacts for heat-related mortality at extreme and moderate temperatures, for chronological and prospective age groups. In the conventional chronological age analysis, absolute risk fell over the study period (e.g. females, extreme heat: -54%; moderate heat: -23%); after accounting for rising longevity, the prospective age analysis, however, found a smaller decline in risk for extreme heat (-15%) and a rise for moderate heat (+46%). Additionally, while the chronological age analysis suggested a shift in mortality towards higher ages, the prospective age analysis showed that over the study period, people of largely the same (prospective) age were impacted. Further, the prospective age analysis revealed excess risk in females (compared to males) rose from 20% to 27% for extreme heat, and from 40% to 70% for moderate heat. Assessing the implications of ageing using a prospective age perspective showed the urgency of re-doubling risk reduction efforts, including accelerating healthy ageing programs that incorporate climate considerations. The age patterns of impacts suggested that such actions have the potential to mitigate ageing-related heat-health threats to generate climate change-ready, healthy societies.


Asunto(s)
Calor Extremo , Calor , Masculino , Femenino , Humanos , España/epidemiología , Estudios Prospectivos , Temperatura , Mortalidad
2.
Thorax ; 78(9): 875-881, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37068951

RESUMEN

BACKGROUND: Previous studies have reported an association between warm temperature and asthma hospitalisation. They have reported different sex-related and age-related vulnerabilities; nevertheless, little is known about how this effect has changed over time and how it varies in space. This study aims to evaluate the association between asthma hospitalisation and warm temperature and investigate vulnerabilities by age, sex, time and space. METHODS: We retrieved individual-level data on summer asthma hospitalisation at high temporal (daily) and spatial (postcodes) resolutions during 2002-2019 in England from the NHS Digital. Daily mean temperature at 1 km×1 km resolution was retrieved from the UK Met Office. We focused on lag 0-3 days. We employed a case-crossover study design and fitted Bayesian hierarchical Poisson models accounting for possible confounders (rainfall, relative humidity, wind speed and national holidays). RESULTS: After accounting for confounding, we found an increase of 1.11% (95% credible interval: 0.88% to 1.34%) in the asthma hospitalisation risk for every 1°C increase in the ambient summer temperature. The effect was highest for males aged 16-64 (2.10%, 1.59% to 2.61%) and during the early years of our analysis. We also found evidence of a decreasing linear trend of the effect over time. Populations in Yorkshire and the Humber and East and West Midlands were the most vulnerable. CONCLUSION: This study provides evidence of an association between warm temperature and hospital admission for asthma. The effect has decreased over time with potential explanations including temporal differences in patterns of heat exposure, adaptive mechanisms, asthma management, lifestyle, comorbidities and occupation.


Asunto(s)
Asma , Calor , Humanos , Masculino , Asma/epidemiología , Teorema de Bayes , Estudios Cruzados , Inglaterra/epidemiología , Hospitalización
3.
Ann Behav Med ; 57(3): 193-204, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35861123

RESUMEN

BACKGROUND: Human activities have changed the environment so profoundly over the past two centuries that human-induced climate change is now posing serious health-related threats to current and future generations. Rapid action from all scientific fields, including behavioral medicine, is needed to contribute to both mitigation of, and adaption to, climate change. PURPOSE: This article aims to identify potential bi-directional associations between climate change impacts and health-related behaviors, as well as a set of key actions for the behavioral medicine community. METHODS: We synthesized the existing literature about (i) the impacts of rising temperatures, extreme weather events, air pollution, and rising sea level on individual behaviors (e.g., eating behaviors, physical activity, sleep, substance use, and preventive care) as well as the structural factors related to these behaviors (e.g., the food system); and (ii) the concurrent positive and negative roles that health-related behaviors can play in mitigation and adaptation to climate change. RESULTS: Based on this literature review, we propose a first conceptual model of climate change and health-related behavior feedback loops. Key actions are proposed, with particular consideration for health equity implications of future behavioral interventions. Actions to bridge the fields of behavioral medicine and climate sciences are also discussed. CONCLUSIONS: We contend that climate change is among the most urgent issues facing all scientists and should become a central priority for the behavioral medicine community.


Asunto(s)
Cambio Climático , Modelos Teóricos , Humanos , Conductas Relacionadas con la Salud
4.
Thorax ; 77(11): 1098-1104, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35459745

RESUMEN

BACKGROUND: There is emerging evidence suggesting a link between ambient heat exposure and chronic obstructive pulmonary disease (COPD) hospitalisations. Individual and contextual characteristics can affect population vulnerabilities to COPD hospitalisation due to heat exposure. This study quantifies the effect of ambient heat on COPD hospitalisations and examines population vulnerabilities by age, sex and contextual characteristics. METHODS: Individual data on COPD hospitalisation at high geographical resolution (postcodes) during 2007-2018 in England was retrieved from the small area health statistics unit. Maximum temperature at 1 km ×1 km resolution was available from the UK Met Office. We employed a case-crossover study design and fitted Bayesian conditional Poisson regression models. We adjusted for relative humidity and national holidays, and examined effect modification by age, sex, green space, average temperature, deprivation and urbanicity. RESULTS: After accounting for confounding, we found 1.47% (95% Credible Interval (CrI) 1.19% to 1.73%) increase in the hospitalisation risk for every 1°C increase in temperatures above 23.2°C (lags 0-2 days). We reported weak evidence of an effect modification by sex and age. We found a strong spatial determinant of the COPD hospitalisation risk due to heat exposure, which was alleviated when we accounted for contextual characteristics. 1851 (95% CrI 1 576 to 2 079) COPD hospitalisations were associated with temperatures above 23.2°C annually. CONCLUSION: Our study suggests that resources should be allocated to support the public health systems, for instance, through developing or expanding heat-health alerts, to challenge the increasing future heat-related COPD hospitalisation burden.


Asunto(s)
Calor , Enfermedad Pulmonar Obstructiva Crónica , Teorema de Bayes , Estudios Cruzados , Hospitalización , Humanos , Enfermedad Pulmonar Obstructiva Crónica/epidemiología
5.
Environ Res ; 214(Pt 3): 114082, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35964673

RESUMEN

BACKGROUND: To date, little is known about the temporal variation of the temperature-mortality association among different demographic and socio-economic groups. The aim of this work is to investigate trends in cold- and heat- attributable mortality risk and burden by sex, age, education, marital status, and number of household occupants in the city of Turin, Italy. METHODS: We collected daily time-series of temperature and mortality counts by demographic and socio-economic groups for the period 1982-2018 in Turin. We applied standard quasi-Poisson regression models to data subsets of 25-year moving subperiods, and we estimated the temperature-mortality associations with distributed lag non-linear models (DLNM). We provided cross-linkages between the evolution of minimum mortality temperatures, relative risks of mortality and temperature-attributable deaths under cold and hot conditions. RESULTS: Our findings highlighted an overall increase in risk trends under cold and heat conditions. All-cause mortality at the 1st percentile increased from 1.15 (95% CI: 1.04; 1.28) in 1982-2006 to 1.24 (95% CI: 1.11; 1.38) in 1994-2018, while at the 99th percentile the risk shifted from 1.51 (95% CI: 1.41; 1.61) to 1.59 (95% CI: 1.49; 1.71). In relation to social differences, women were characterized by greater values in respect to men, and similar estimates were observed among the elderly in respect to the youngest subgroup. Risk trends by educational subgroups were mixed, according to the reference temperature condition. Finally, individuals living in conditions of isolation were characterized by higher risks, with an increasing vulnerability throughout time. CONCLUSIONS: The overall increase in cold- and heat- related mortality risk suggests a maladaptation to ambient temperatures in Turin. Despite alert systems in place increase public awareness and improve the efficiency of existing health services at the local level, they do not necessarily prevent risks in a homogeneous way. Targeted public health responses to cold and heat in Turin are urgently needed to adapt to extreme temperatures due to climate change.


Asunto(s)
Frío , Calor , Anciano , Femenino , Humanos , Masculino , Mortalidad , Factores de Riesgo , Factores Socioeconómicos , Temperatura
6.
Environ Res ; 209: 112887, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35134377

RESUMEN

BACKGROUND: The SARS-CoV-2 virus pandemic is primarily transmitted by direct contact between infected and uninfected people, though, there are still many unknown factors influencing the survival and transmission of the virus. Air temperature is one of the main susceptible factors. This study aimed to explore the impact of air and land surface temperatures on Covid-19 transmission in a region of Iran. METHOD: Daily Land Surface Temperature (LST) measured by satellite and Air Temperature measured by weather station were used as the predictors of Covid-19 transmission. The data were obtained from February 2020 to April 2021. Spatio-temporal kriging was used in order to predict LST in some days in which no image was recorded by the satellite. The validity of the predicted values was assessed by Bland-Altman technique. The impact of the predictors was analyzed by Distributed Lag Non-linear Model (DLNM). In addition to main effect of temperature, its linear as well as non-linear interaction effect with relative humidity were considered using Generalized Additive Model (GAM) and a bivariate response surface model. Sensitivity analyses were done to select models' parameters, autocorrelation model and function of associations. RESULTS: The dose-response curve revealed that the impact of both predictors was not obvious, though, the risk of transmission tended to be positive due to low values of temperatures. Although the linear interaction effect was not statistically significant, but joint patterns showed that the impact of both LST and AT tended to be different when humidity values were changed. CONCLUSION: However the findings suggested that both LST and AT were not statistically important predictors, but they tended to predict the Covid-19 transmission in some lags. Because of local based evidence, the wide confidence intervals and then non-significant values should be cautiously interpreted.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Humanos , Humedad , Irán/epidemiología , SARS-CoV-2 , Temperatura , Tiempo (Meteorología)
7.
PLoS Med ; 18(4): e1003627, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33930017

RESUMEN

[This corrects the article DOI: 10.1371/journal.pmed.1002617.].

8.
Environ Res ; 197: 110992, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33705766

RESUMEN

BACKGROUND: Physical activity can be affected by both meteorological conditions and surrounding greenness, but few studies have evaluated the effects of these environmental factors on physical activity simultaneously. This multi-city comparative study aimed to assess the synergetic effects of apparent temperature and surrounding greenness on physical activity in four European cities. Specifically, we aimed to identify an interaction between surrounding greenness and apparent temperature in the effects on physical activity. METHODS: Data were collected from 352 adult residents of Barcelona (Spain), Stoke-on-Trent (United Kingdom), Doetinchem (The Netherlands), and Kaunas (Lithuania) as part of the PHENOTYPE study. Participants wore a smartphone for seven consecutive days between May-December 2013 and provided additional sociodemographic survey data. Hourly average physical activity (Metabolic Equivalent of Task (MET)) and surrounding greenness (NDVI) were derived from the Calfit mobile application collecting accelerometer and location data. Hourly apparent temperature was calculated from temperature and relative humidity, which were obtained from local meteorological stations along with other meteorological covariates (rainfall, windspeed, and sky darkness). We assessed the interaction effects of apparent temperature and surrounding greenness on hourly physical activity for each city using linear mixed models, while adjusting for meteorological, demographic, and time-related variables. RESULTS: We found significant interactions between apparent temperature and surrounding greenness on hourly physical activity in three of four cities, aside from the coastal city of Barcelona. Significant quadratic effects of apparent temperature were found in the highest level of surrounding greenness for Stoke-on-Trent and Doetinchem, with 4% decrease in median MET observed for a 10°C departure from optimal temperature (15.2°C and 14.6°C, respectively). Significant linear effects were found for higher levels of surrounding greenness in Kaunas, whereby an increase of 10°C was associated with ∼4% increase in median MET. CONCLUSION: Apparent temperature and surrounding greenness interacted in the effect on hourly physical activity across three of four European cities, with varying effect between cities. While quadratic effects of temperature suggest diminishing levels of physical activity in the highest greenness levels in cities of temperate climates, the variation in surrounding greenness between cities could be further explored, particularly by looking at indoor-outdoor locations. The study findings support the need for evidence-based physical activity promotion and urban design.


Asunto(s)
Ejercicio Físico , Ciudades , Lituania , Países Bajos , Fenotipo , España , Temperatura , Reino Unido
9.
Environ Health ; 19(1): 116, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33198753

RESUMEN

BACKGROUND: Understanding context specific heat-health risks in urban areas is important, especially given anticipated severe increases in summer temperatures due to climate change effects. We investigate social inequalities in the association between daily temperatures and mortality in summer in the city of Turin for the period 1982-2018 among different social and demographic groups such as sex, age, educational level, marital status and household occupants. METHODS: Mortality data are represented by individual all-cause mortality counts for the summer months between 1982 and 2018. Socioeconomic level and daily mean temperature were assigned to each deceased. A time series Poisson regression with distributed lag non-linear models was fitted to capture the complex nonlinear dependency between daily mortality and temperature in summer. The mortality risk due to heat is represented by the Relative Risk (RR) at the 99th percentile of daily summer temperatures for each population subgroup. RESULTS: All-cause mortality risk is higher among women (1.88; 95% CI = 1.77, 2.00) and the elderly (2.13; 95% CI = 1.94, 2.33). With regard to education, the highest significant effects for men is observed among higher education levels (1.66; 95% CI = 1.38, 1.99), while risks for women is higher for the lower educational level (1.93; 95% CI = 1.79, 2.08). Results on marital status highlighted a stronger association for widower in men (1.66; 95% CI = 1.38, 2.00) and for separated and divorced in women (2.11; 95% CI = 1.51, 2.94). The risk ratio of household occupants reveals a stronger association for men who lived alone (1.61; 95% CI = 1.39, 1.86), while for women results are almost equivalent between alone and not alone groups. CONCLUSIONS: The associations between heat and mortality is unequal across different aspects of social vulnerability, and, inter alia, factors influencing the population vulnerability to temperatures can be related to demographic, social, and economic aspects. A number of issues are identified and recommendations for the prioritisation of further research are provided. A better knowledge of these effect modifiers is needed to identify the axes of social inequality across the most vulnerable population sub-groups.


Asunto(s)
Trastornos de Estrés por Calor/mortalidad , Calor/efectos adversos , Factores Socioeconómicos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Ciudades/epidemiología , Femenino , Humanos , Lactante , Recién Nacido , Italia/epidemiología , Masculino , Persona de Mediana Edad , Adulto Joven
10.
Int J Mol Sci ; 20(24)2019 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-31835530

RESUMEN

O-mannosylation is implicated in protein quality control in Saccharomyces cerevisiae due to the attachment of mannose to serine and threonine residues of un- or misfolded proteins in the endoplasmic reticulum (ER). This process also designated as unfolded protein O-mannosylation (UPOM) that ends futile folding cycles and saves cellular resources is mainly mediated by protein O-mannosyltransferases Pmt1 and Pmt2. Here we describe a genetic screen for factors that influence O-mannosylation in yeast, using slow-folding green fluorescent protein (GFP) as a reporter. Our screening identifies the RNA binding protein brefeldin A resistance factor 1 (Bfr1) that has not been linked to O-mannosylation and ER protein quality control before. We find that Bfr1 affects O-mannosylation through changes in Pmt1 and Pmt2 protein abundance but has no effect on PMT1 and PMT2 transcript levels, mRNA localization to the ER membrane or protein stability. Ribosome profiling reveals that Bfr1 is a crucial factor for Pmt1 and Pmt2 translation thereby affecting unfolded protein O-mannosylation. Our results uncover a new level of regulation of protein quality control in the secretory pathway.


Asunto(s)
Manosiltransferasas/química , Manosiltransferasas/genética , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/metabolismo , Glicosilación , Manosiltransferasas/metabolismo , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Eliminación de Secuencia
11.
PLoS Med ; 15(7): e1002617, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30040838

RESUMEN

BACKGROUND: Anthropogenic greenhouse gas emissions have increased summer temperatures in Spain by nearly one degree Celsius on average between 1980 and 2015. However, little is known about the extent to which the association between heat and human mortality has been modified. We here investigate whether the observed warming has been associated with an upward trend in excess mortality attributable to heat or, on the contrary, a decrease in the vulnerability to heat has contributed to a reduction of the mortality burden. METHODS AND FINDINGS: We analysed a dataset from 47 major cities in Spain for the summer months between 1980 and 2015, which included daily temperatures and 554,491 deaths from circulatory and respiratory causes, by sex. We applied standard quasi-Poisson regression models, controlling for seasonality and long-term trends, and estimated the temporal variation in heat-related mortality with time-varying distributed lag nonlinear models (DLNMs). Results pointed to a reduction in the relative risks of cause-specific and cause-sex mortality across the whole range of summer temperatures. These reductions in turn explained the observed downward trends in heat-attributable deaths, with the only exceptions of respiratory diseases for women and both sexes together. The heat-attributable deaths were consistently higher in women than in men for both circulatory and respiratory causes. The main limitation of our study is that we were not able to account for air pollution in the models because of data unavailability. CONCLUSIONS: Despite the summer warming observed in Spain between 1980 and 2015, the decline in the vulnerability of the population has contributed to a general downward trend in overall heat-attributable mortality. This reduction occurred in parallel with a decline in the vulnerability difference between men and women for circulatory and cardiorespiratory mortality. Despite these advances, the risk of death remained high for respiratory diseases, and particularly in women.


Asunto(s)
Enfermedades Cardiovasculares/mortalidad , Cambio Climático/mortalidad , Calor/efectos adversos , Enfermedades Respiratorias/mortalidad , Estaciones del Año , Enfermedades Cardiovasculares/diagnóstico , Causas de Muerte/tendencias , Femenino , Humanos , Masculino , Enfermedades Respiratorias/diagnóstico , Medición de Riesgo , Factores de Riesgo , Distribución por Sexo , Factores Sexuales , España/epidemiología , Factores de Tiempo
12.
Mol Cell Proteomics ; 15(4): 1323-37, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26764011

RESUMEN

O-Mannosylation is a vital protein modification conserved from fungi to humans. Yeast is a perfect model to study this post-translational modification, because in contrast to mammalsO-mannosylation is the only type ofO-glycosylation. In an essential step toward the full understanding of proteinO-mannosylation we mapped theO-mannose glycoproteome in baker's yeast. Taking advantage of anO-glycan elongation deficient yeast strain to simplify sample complexity, we identified over 500O-glycoproteins from all subcellular compartments for which over 2300O-mannosylation sites were mapped by electron-transfer dissociation (ETD)-based MS/MS. In this study, we focus on the 293O-glycoproteins (over 1900 glycosylation sites identified by ETD-MS/MS) that enter the secretory pathway and are targets of ER-localized proteinO-mannosyltransferases. We find thatO-mannosylation is not only a prominent modification of cell wall and plasma membrane proteins, but also of a large number of proteins from the secretory pathway with crucial functions in protein glycosylation, folding, quality control, and trafficking. The analysis of glycosylation sites revealed thatO-mannosylation is favored in unstructured regions and ß-strands. Furthermore,O-mannosylation is impeded in the proximity ofN-glycosylation sites suggesting the interplay of these types of post-translational modifications. The detailed knowledge of the target proteins and theirO-mannosylation sites opens for discovery of new roles of this essential modification in eukaryotes, and for a first glance on the evolution of different types ofO-glycosylation from yeast to mammals.


Asunto(s)
Glicoproteínas/química , Glicoproteínas/metabolismo , Manosa/metabolismo , Proteómica/métodos , Saccharomyces cerevisiae/genética , Sitios de Unión , Retículo Endoplásmico/metabolismo , Glicoproteínas/genética , Glicosilación , Modelos Moleculares , Dominios Proteicos , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Molecules ; 23(10)2018 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-30322079

RESUMEN

For proteins entering the secretory pathway, a major factor contributing to maturation and homeostasis is glycosylation. One relevant type of protein glycosylation is O-mannosylation, which is essential and evolutionarily-conserved in fungi, animals, and humans. Our recent proteome-wide study in the eukaryotic model organism Saccharomyces cerevisiae revealed that more than 26% of all proteins entering the secretory pathway receive O-mannosyl glycans. In a first attempt to understand the impact of O-mannosylation on these proteins, we took advantage of a tandem fluorescent timer (tFT) reporter to monitor different aspects of protein dynamics. We analyzed tFT-reporter fusions of 137 unique O-mannosylated proteins, mainly of the secretory pathway and the plasma membrane, in mutants lacking the major protein O-mannosyltransferases Pmt1, Pmt2, or Pmt4. In these three pmtΔ mutants, a total of 39 individual proteins were clearly affected, and Pmt-specific substrate proteins could be identified. We observed that O-mannosylation may cause both enhanced and diminished protein abundance and/or stability when compromised, and verified our findings on the examples of Axl2-tFT and Kre6-tFT fusion proteins. The identified target proteins are a valuable resource towards unraveling the multiple functions of O-mannosylation at the molecular level.


Asunto(s)
Manosa/química , Manosiltransferasas/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Membrana Celular , Genes Reporteros , Glicosilación , Manosiltransferasas/metabolismo , Microscopía Fluorescente , Mutación , Estabilidad Proteica , Proteómica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Proc Natl Acad Sci U S A ; 111(22): 7952-7, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24843117

RESUMEN

Evidence indicates that the densely cultivated region of northeastern China acts as a source for the wind-borne agent of Kawasaki disease (KD). KD is an acute, coronary artery vasculitis of young children, and still a medical mystery after more than 40 y. We used residence times from simulations with the flexible particle dispersion model to pinpoint the source region for KD. Simulations were generated from locations spanning Japan from days with either high or low KD incidence. The postepidemic interval (1987-2010) and the extreme epidemics (1979, 1982, and 1986) pointed to the same source region. Results suggest a very short incubation period (<24 h) from exposure, thus making an infectious agent unlikely. Sampling campaigns over Japan during the KD season detected major differences in the microbiota of the tropospheric aerosols compared with ground aerosols, with the unexpected finding of the Candida species as the dominant fungus from aloft samples (54% of all fungal strains). These results, consistent with the Candida animal model for KD, provide support for the concept and feasibility of a windborne pathogen. A fungal toxin could be pursued as a possible etiologic agent of KD, consistent with an agricultural source, a short incubation time and synchronized outbreaks. Our study suggests that the causative agent of KD is a preformed toxin or environmental agent rather than an organism requiring replication. We propose a new paradigm whereby an idiosyncratic immune response, influenced by host genetics triggered by an environmental exposure carried on winds, results in the clinical syndrome known as acute KD.


Asunto(s)
Antígenos/toxicidad , Grano Comestible/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Síndrome Mucocutáneo Linfonodular/epidemiología , Síndrome Mucocutáneo Linfonodular/etiología , Viento , Agricultura , Antígenos/genética , Antígenos Fúngicos/genética , Antígenos Fúngicos/toxicidad , Aspergillus/genética , Candida/genética , China/epidemiología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Epidemias/estadística & datos numéricos , Humanos , Incidencia , Japón/epidemiología , Modelos Estadísticos , ARN Ribosómico 18S/genética , Vasculitis/epidemiología , Vasculitis/etiología
16.
Int J Epidemiol ; 53(1)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37857363

RESUMEN

BACKGROUND: Only little is known about trends in temperature-mortality associations among the most vulnerable subgroups, especially in the areas of central and eastern Europe, which are considered major climatic hotspots in terms of heatwave exposure. Thus, we aimed to assess trends in temperature-related mortality in the Czech Republic by sex, age and cause of death, and to quantify the temporal evolution of possible inequalities. METHODS: We collected daily time series of all-cause (1987-2019) and cause-specific (1994-2019) mortality by sex and age category, and population-weighted daily mean 2-metre temperatures for each region of the Czech Republic. We applied a quasi-Poisson regression model to estimate the trends in region-specific temperature-mortality associations, with distributed lag non-linear models and multivariate random-effects meta-analysis to derive average associations across the country. We then calculated mortality attributable to non-optimal temperatures and implemented the indicator of sex- and age-dependent inequalities. RESULTS: We observed a similar risk of mortality due to cold temperatures for men and women. Conversely, for warm temperatures, a higher risk was observed for women. Results by age showed a clear pattern of increasing risk due to non-optimum temperatures with increasing age category. The relative risk (RR) related to cold was considerably attenuated in most of the studied subgroups during the study period, whereas an increase in the RR associated with heat was seen in the overall population, in women, in the age category 90+ years and with respect to respiratory causes. Moreover, underlying sex- and age-dependent inequalities experienced substantial growth. CONCLUSIONS: Our findings suggest ongoing adaptation to cold temperatures. Mal/adaptation to hot temperatures occurred unequally among population subgroups and resulted in growing inequalities between the sexes and among age categories.


Asunto(s)
Frío , Calor , Masculino , Humanos , Femenino , Anciano de 80 o más Años , República Checa/epidemiología , Temperatura , Factores de Riesgo , Mortalidad
17.
Nat Med ; 30(6): 1732-1738, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38830993

RESUMEN

Ground-level ozone (O3) is a harmful air pollutant formed in the atmosphere by the interaction between sunlight and precursor gases. Exposure to current O3 levels in Europe is a major source of premature mortality from air pollution. However, mitigation actions have been mainly designed and implemented at the national and regional scales, lacking a comprehensive assessment of the geographic sources of O3 pollution and its associated health impacts. Here we quantify both national and imported contributions to O3 and their related mortality burden across 813 contiguous regions in 35 European countries, representing about 530 million people. Imported O3 contributed to 88.3% of all O3-attributable deaths (intercountry range 83-100%). The greatest share of imported O3 had its origins outside the study domain (that is, hemispheric sources), which was responsible for 56.7% of total O3-attributable mortality (range 42.5-87.2%). It was concluded that achieving the air-quality guidelines set out by the World Health Organization and avoiding the health impacts of O3 require not only the implementation of national or coordinated pan-European actions but also global strategies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Ozono/efectos adversos , Ozono/análisis , Europa (Continente)/epidemiología , Humanos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Mortalidad Prematura/tendencias , Mortalidad/tendencias
18.
Int J Epidemiol ; 53(3)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38641428

RESUMEN

BACKGROUND: Distributed lag non-linear models (DLNMs) are the reference framework for modelling lagged non-linear associations. They are usually used in large-scale multi-location studies. Attempts to study these associations in small areas either did not include the lagged non-linear effects, did not allow for geographically-varying risks or downscaled risks from larger spatial units through socioeconomic and physical meta-predictors when the estimation of the risks was not feasible due to low statistical power. METHODS: Here we proposed spatial Bayesian DLNMs (SB-DLNMs) as a new framework for the estimation of reliable small-area lagged non-linear associations, and demonstrated the methodology for the case study of the temperature-mortality relationship in the 73 neighbourhoods of the city of Barcelona. We generalized location-independent DLNMs to the Bayesian framework (B-DLNMs), and extended them to SB-DLNMs by incorporating spatial models in a single-stage approach that accounts for the spatial dependence between risks. RESULTS: The results of the case study highlighted the benefits of incorporating the spatial component for small-area analysis. Estimates obtained from independent B-DLNMs were unstable and unreliable, particularly in neighbourhoods with very low numbers of deaths. SB-DLNMs addressed these instabilities by incorporating spatial dependencies, resulting in more plausible and coherent estimates and revealing hidden spatial patterns. In addition, the Bayesian framework enriches the range of estimates and tests that can be used in both large- and small-area studies. CONCLUSIONS: SB-DLNMs account for spatial structures in the risk associations across small areas. By modelling spatial differences, SB-DLNMs facilitate the direct estimation of non-linear exposure-response lagged associations at the small-area level, even in areas with as few as 19 deaths. The manuscript includes an illustrative code to reproduce the results, and to facilitate the implementation of other case studies by other researchers.


Asunto(s)
Contaminación del Aire , Humanos , Contaminación del Aire/análisis , Dinámicas no Lineales , Teorema de Bayes , Temperatura
19.
Sci Total Environ ; 918: 170593, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38307268

RESUMEN

Aerosol Optical Depth (AOD) data derived from satellites is crucial for estimating spatially-resolved PM concentrations, but existing AOD data over land remain affected by several limitations (e.g., data gaps, coarser resolution, higher uncertainty or lack of size fraction data), which weakens the AOD-PM relationship. We developed a 0.1° resolution daily AOD data set over Europe over the period 2003-2020, based on two-stage Quantile Machine Learning (QML) frameworks. Our approach first fills gaps in satellite AOD data and then constructs three components' models to obtain reliable full-coverage AOD along with Fine-mode AOD (fAOD) and Coarse-mode AOD (cAOD). These models are based on AERONET (AErosol RObotic NETwork) observations, Gap-filled satellite AOD, climate and atmospheric composition reanalyses. Our QML AOD products exhibit better quality with an out-of-sample R2 equal to 0.68 for AOD, 0.66 for fAOD and 0.65 for cAOD, which is 23-92 %, 11-13 % and 115-132 % higher than the corresponding satellite or reanalysis products, respectively. Over 91.6 %, 81.6 %, and 88.9 % of QML AOD, fAOD and cAOD predictions fall within ±20 % Expected Error (EE) envelopes, respectively. Previous studies reported that a weak satellite AOD-PM correlation across Europe (Pearson correlation coefficient (PCC) around 0.1). Our QML products exhibit higher correlations with ground-level PMs, particularly when broadly matched by size: AOD with PM10, fAOD with PM2.5, cAOD with PM coarse (R = 0.41, 0.45 and 0.26, respectively). Different AOD fractions more effectively distinct PM size fractions, than total AOD. Our QML aerosol dataset and models pioneer full-coverage, daily high-resolution monitoring of fine-mode and coarse-mode aerosols, effectively addressing existing AOD challenges for further PMs exposures' estimations. This dataset opens avenues for more in-depth exploration of the impacts of aerosols on human health, climate, visibility, and biogeochemical processes, offering valuable insights for air quality management and environmental health risk assessment.

20.
Nat Commun ; 15(1): 2094, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480711

RESUMEN

Air pollution remains as a substantial health problem, particularly regarding the combined health risks arising from simultaneous exposure to multiple air pollutants. However, understanding these combined exposure events over long periods has been hindered by sparse and temporally inconsistent monitoring data. Here we analyze daily ambient PM2.5, PM10, NO2 and O3 concentrations at a 0.1-degree resolution during 2003-2019 across 1426 contiguous regions in 35 European countries, representing 543 million people. We find that PM10 levels decline by 2.72% annually, followed by NO2 (2.45%) and PM2.5 (1.72%). In contrast, O3 increase by 0.58% in southern Europe, leading to a surge in unclean air days. Despite air quality advances, 86.3% of Europeans experience at least one compound event day per year, especially for PM2.5-NO2 and PM2.5-O3. We highlight the improvements in air quality control but emphasize the need for targeted measures addressing specific pollutants and their compound events, particularly amidst rising temperatures.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/análisis , Contaminación del Aire/análisis , Europa (Continente) , Material Particulado/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA